Oncolytic adenoviruses, also called conditionally replicating adenoviruses (CRADs), have been widely applied in cancer gene therapy. However, the construction of CRADs is still time-consuming. In this study, we attempted to establish a simplified method of generating CRADs based on AdEasy system. A novel plasmid pTE-TPE-GM was constructed, containing sequentially positioned promoter of telomerase reverse transcriptase (TERTp), coding sequence of E1A gene, promoter of E1B gene, granulocytemacrophage colony-stimulating factor (GM-CSF) gene, internal ribosome entry site sequence and coding sequence of E1B55K gene. The CRAD-generating system reported here include three plasmids: pTE-TPE-GM, pShuttle-CMV and AdEasy-1, one Escherichia coli strain BJ5183, and the packaging cell line 293. Using this system, an oncolytic adenovirus carrying B7-1 (CD80) and GM-CSF genes was successfully constructed and designated as Ad-CD80-TPE-GM. The expression of GM-CSF increased more than 9000 times in tumor cell lines infected by Ad-CD80-TPE-GM at a multiplicity of infection (MOI) of 5, compared with the cells infected by replication-defective control virus. Similarly, the expression of CD80 also increased 9-140 times. Ad-CD80-TPE-GM selectively replicates in TERT-positive tumor cells, and the progeny viruses can reach up to 375 infection units (IU) per cell. In vitro study showed that the Ad-CD80-TPE-GM induced an obvious oncolytic effect at MOI of 0.1, and killed about 80% TERT-positive tumor cells within 7 days at an MOI of 1. The antitumor effect of this vector was also investigated in Hep2 xenograft model of nude mice, and the tumor inhibition rate reached 74% at day 30 after the administration with a total dose of 1 Â 10 9 IU Ad-CD80-TPE-GM. Intratumoral injection of Ad-CD80-TPE-GM slightly induced neutralizing antibody against the oncolytic adenovirus in nude mice, which might contribute to the virus clearance in vivo. In conclusion, we successfully constructed an oncolytic CRAD carrying GM-CSF and CD80 gene. More importantly, this system can be modified to generate novel transcriptionally regulated CRADs with different tissue-specific promoters or transgenes.
To improve the expression levels of transgenes in malignant hematopoietic cells, we developed a novel adenoviral-alphavirus hybrid vector Ad5/F11p-SFV-GFP that contains a Semliki Forest Virus (SFV) replicon and chimeric fibers of Ad5 and Ad11p. Ad5/F11p-SFV-GFP infected >95% of K562, U937 or Jurkat cells and 23.65% of HL-60 cells, and led to moderate Enhanced Green Fluorescent Protein (EGFP) transgene expression intensity. The infection efficiency of Ad5/F11p-SFV-GFP in primary human leukemia cells ranged from 9.34-89.63% (median, 28.58%) at a multiplicity of infection (MOI) of 100, compared with only 3.37-44.54% (median, 10.42%) in cells infected by Ad5/F11p-GFP. Importantly, Ad5/F11p-SFV-GFP led to a significantly higher transgene expression level in primary leukemia cells, as indicated by the relative fluorescence intensity, compared to cells infected with Ad5/F11p-GFP. The increased expression of EGFP in Ad5/F11p-SFV-GFP-infected cells was associated with the accumulation of abundant subgenomic mRNA. Additionally, infection of K562, U937 or Jurkat cells by Ad5/F11p-SFV-GFP was significantly inhibited by blocking CD46 receptor; however, other factors may affect the gene-transfer efficiency of Ad5/F11p-SFV-GFP in primary leukemia cells. In conclusion, we successfully developed a novel adenoviral-alphavirus hybrid vector with RNA replicon features, which represents a promising vector for gene modifications during the production of cell-based vaccines for leukemia patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.