The 92 kDa type IV collagenase (MMP-9), which degrades type IV collagen, has been implicated in tissue remodeling. The purpose of the current study was to determine the role of Jun amino-terminal kinase (JNK)-and extracellular signal-regulated kinase-(ERK)-dependent signaling cascades in the regulation of MMP-9 expression. Towards this end, we ®rst determined the transcriptional requirements for MMP-9 promoter activity in a cell line (UM-SCC-1) which is an avid secretor of this collagenase. Transfection of these cells with a CAT reporter driven by progressive 5' deleted fragments of the MMP-9 promoter indicated the requirement of a region spanning 7144 to 773 for optimal promoter activity. DNase I footprinting revealed a protected region of the promoter spanning nucleotides 791 to 768 and containing a consensus AP-1 motif at 779. Mutation of this AP-1 motif practically abolished the activity of the MMP-9 promoter-driven CAT reporter. Mobility shift assays indicated c-Fos and Jun-D bound to this motif and transfection of the cells with a mutated c-Jun, which quenches the function of endogenous Jun and Fos proteins, decreased MMP-9 promoter activity by 80%. UM-SCC-1 cells contained a constitutively activated JNK and the expression of a kinasede®cient JNK1 reduced the activity of a CAT reporter driven either by the MMP-9 promoter or by three tandem AP-1 repeats upstream of a thymidine kinase minimal promoter. Conditioned medium collected from UM-SCC-1 cells transfected with the dominant negative JNK1 expression vector diminished 92 kDa gelatinolysis. Similarly, interfering with MEKK, which lies upstream of JNK1, using a dominant negative expression vector reduced MMP-9 promoter activity over the same concentration range which repressed the AP-1-thymidine kinase CAT reporter construct. UM-SCC-1 cells also contained a constitutively activated ERK1. MMP-9 expression, as determined by CAT assays and by zymography, was reduced by the co-expression of a kinase-de®cient ERK1. Interfering with MEK1, which is an upstream activator of ERK1, either with PD 098059, which prevents the activation of MEK1, or with a dominant negative expression construct, reduced 92 kDa gelatinolysis and MMP-9 promoter activity respectively. c-Raf-1 is an upstream activator of MEK1 and a kinasede®cient c-Raf-1 expression construct decreased the activity of a promoter driven by either the MMP-9 promoter or three tandem AP-1 repeats. Conversely, treatment of UM-SCC-1 cells with PMA, which activates c-Raf-1, increased 92 kDa gelatinolysis. These data suggest that MMP-9 expression in UM-SCC-1 cells, is regulated by JNK-and ERK-dependent signaling pathways.
BACKGROUND: Despite having a dramatically larger surface area than the large intestine, the small intestine is an infrequent site for the development of adenocarcinoma. To better understand the molecular abnormalities in small bowel adenocarcinoma (SBA), we characterised a number of candidate oncogenic pathways and the immunophenotype of this rare cancer. METHODS: Tissue microarrays were constructed from tumour samples from 54 patients with all stages of the disease. Immunohistochemistry and microsatellite instability (MSI) testing were conducted. RESULTS: The profile of cytokeratin 20 and 7 coexpression was variable, but expression of caudal type homeobox transcription factor 2 (CDX2) was present in 70% of cases. In this young population (median age 54 years), loss of mismatch repair (MMR) proteins occurred in 35% of patients, with confirmed MSI in 100% of tested cases. Expression of vascular endothelial growth factor-A (VEGF-A) and epidermal growth factor receptor (EGFR) was common, occurring in 96 and 71% of patients, respectively. Only one case showed HER2 expression and none showed loss of phosphatase and tensin homologue mutated on chromosome 10 (PTEN). CONCLUSIONS: These results suggest that alterations in DNA MMR pathways are common in SBAs, similar to what is observed in large bowel adenocarcinomas. Furthermore, the high percentage of tumours expressing both EGFR and VEGF suggests that patients with this rare cancer may benefit from therapeutic strategies targeting EGFR and VEGF receptor (VEGFR).
Background:Outcomes for ampullary adenocarcinomas are heterogeneous, and numerous methods of categorisation exist. A histomolecular phenotype based on histology, caudal-type homeodomain transcription factor 2 (CDX2) staining and Mucin 1 (MUC1) staining has recently been tested and validated in two cohorts. We attempt to validate this classification in a large patient population.Methods:Tissue samples from 163 patients with resected ampullary adenocarcinoma were classified based on histology and immunohistochemical expression of CDX2 and MUC1. A pancreaticobiliary histomolecular classification (PB) was defined as a sample with pancreaticobiliary histology, positive MUC1 and negative CDX2 expression.Results:There were 82 deaths; median follow-up of 32.4 months; and median overall survival of 87.7 (95% CI 42.9–109.5) months. PB comprised 28.2% of the cases. Factors associated with overall survival were histological subtype (P=0.0340); T1/2 vs T3/4 (P=0.001); perineural (P<0.0001) and lymphovascular (P=0.0203) invasion; and histomolecular intestinal histomolecular phenotype (INT) vs PB phenotype (106.4 vs 21.2 months, P<0.0001). Neither MUC1 nor CDX2 was statistically significant, although MUC1 positivity defined as ⩾10% staining was significant (P=0.0023). In multivariate analysis, age (HR 1.03), PB phenotype (HR 2.26) and perineural invasion (PNI; HR 2.26) were associated with poor survival.Conclusions:The prognostic ability of histomolecular phenotype has been validated in an independent cohort of ampullary adenocarcinoma patients.
Chronic inflammation (CI) is a risk factor for pancreatic cancer (PC) including the most common type, ductal adenocarcinoma (PDAC), but its role and the mechanisms involved are unclear. To investigate the role of CI in PC, we generated genetic mouse models with pancreatic specific CI in the presence or absence of TP53. Mice were engineered to express either cyclooxygenase-2 (COX-2) or IκB kinase-2 (IKK2), and TP53+/+ or TP53f/f specifically in adult pancreatic acinar cells by using a full-length pancreatic elastase promoter-driven Cre. Animals were followed for >80 weeks and pancreatic lesions were evaluated histologically and immunohistochemically. The presence of K-ras mutations was assessed by direct sequencing, locked nuclei acid (LNA)-based PCR, and immunohistochemistry. We observed that sustained COX-2/IKK2 expression caused histological abnormalities of pancreas, including increased immune cell infiltration, proliferation rate and DNA damage. A minority of animals with CI developed pre-neoplastic lesions, but cancer was not observed in any TP53+/+ animals within 84 weeks. In contrast, all animals with CI-lacking TP53 developed various subtypes of PC, including acinar cell carcinoma, ductal adenocarcinoma, sarcomatoid carcinoma and neuroendocrine tumors, and all died within 65 weeks. No evidence of K-ras mutations was observed. Variations in the activity of the Hippo, pERK and c-Myc pathways were found in the diverse cancer subtypes. In summary, chronic inflammation is extremely inefficient at inducing PC in the presence of TP53. However, in the absence of TP53, CI leads to the development of several rare K-ras-independent forms of PC, with infrequent PDAC. This may help explain the rarity of PDAC in persons with chronic inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.