The establishment of ship trajectory prediction is critical in analyzing trajectory data. It serves as a critical reference point for identifying abnormal behavior and potential collision risks for ships. Accurate and real-time ship trajectory prediction is essential during navigation. Since the timing of automatic identification system (AIS) data is irregular, traditional methods usually use time calibration to simulate the data of uniform sequencing before analysis. Inevitably, this increases the chances of error and time delays. To address this issue, we propose a time-aware LSTM (T-LSTM) single-ship trajectory model combined with the generative adversarial network (GAN) to predict multiple ship trajectories. These analysis methods are capable of directly analyzing AIS data and have demonstrated better performance in both single-ship and multi-ship trajectories. Our experimental results show that the proposed method achieves high accuracy and can meet the practical navigation requirements of ships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.