ICMT promotes endplate cartilage degeneration via activation of Wnt/β-catenin signaling and suppression of physical protein-protein interactions between E-cadherin and β-catenin.
The normal ANK protein has a strong influence on anti-calcification. It is known that TGF-β1 is also able to induce extracellular inorganic pyrophosphate (ePPi) elaboration via the TGF-β1-induced ank gene expression and the mitogen-activated protein kinase (MAPK) signaling acts as a downstream effector of TGF-β1. We hypothesized that the expression of the ank gene is regulated by mechanics through TGF-β1-p38 pathway. In this study, we investigated the mechanism of short-time mechanical tension-induced ank gene expression. We found that the continuous cyclic mechanical tension (CCMT) increased the ank gene expression in the endplate chondrocytes, and there was an increase in the TGF-β1 expression after CCMT stimulation. The ank gene expression significantly increased when treated by TGF-β1 in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our study results indicate that CCMT-induced ank gene expressions may be regulated by TGF-β1 and p38 MAPK pathway.
Mechanical stimulation is known to regulate the calcification of endplate chondrocytes. The Ank protein has a strong influence on anti-calcification by transports intracellular inorganic pyrophosphate (PPi) to the extracellular matrix. It is known that TGF-β1 is able to induce Ank gene expression and protect chondrocyte calcification. Intermittent cyclic mechanical tension (ICMT) could induce calcification of endplate chondrocytes by decrease the expression of Ank gene. In this study, we investigated the relation of intermittent cyclic mechanical unconfined compression (ICMC) and Ank gene expression. We found that ICMC decreased the Ank gene expression in the endplate chondrocytes, and there was an decreased in the TGF-β1 expression after ICMC stimulation. The Ank gene expression significantly increased when treated by transforming growth factor alpha 1 (TGF-β1) in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our results implicate that ICMC-induced downregulation of Ank gene expression may be regulated by TGF-β1 in end-plate chondrocytes.
The response of plants to waterlogging stress is a complex process, with ethylene playing a crucial role as a signaling molecule. However, it remains unclear how ethylene is initially triggered in response to waterlogging stress when plants are continuously waterlogged for less than 12 hours. Here, we have shown that ethylene-induced autophagy leads to the degradation of damaged mitochondria (the main organelles producing reactive oxygen species (ROS)) to reduce ROS production during oxidative stress in Arabidopsis thaliana, which improves the survival rate of root cells in the early stages of waterlogging stress. Waterlogging stress activated ethylene-related genes, including ACO2, ACS2, ERF72, ERF73, and EIN3, and ethylene content of plants increased significantly within 24 h of continuous waterlogging. As stress duration increased, increased amounts of ROS accumulated in Arabidopsis thaliana roots, and the activity of antioxidant enzymes initially increased and then decreased. Concurrently, the level of ethylene-induced autophagy, which participates in antioxidant defense, is higher in wild-type plants than in the octuple acs mutant cs16651 (acs2-1/acs4-1/acs5-2/acs6-1/acs7-1/acs9-1/amiRacs8acs11). Exogenous application of 1-aminocyclopropanecarboxylic acid (ACC), resulted in a more pronounced manifestation of autophagy in the stele of Arabidopsis roots. Compared with the waterlogging treatment group or the ACC treatment group, the waterlogging + ACC treatment can induce autophagy to occur earlier and expand the autophagic range to the epidermis of Arabidopsis thaliana roots. Overall, our results provide insight into the important role of ethylene-induced autophagy in enhancing the antioxidative capacity of Arabidopsis thaliana during the early stages of waterlogging stress. Furthermore, we suggest ethylene as a potential candidate for mitigating the deleterious effects caused by waterlogging in Arabidopsis thaliana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.