This study proposes a neural network-family competition genetic algorithm (NN-FCGA) for solving the electromagnetic (EM) optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN) and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA) to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.