Isolated oral clefts, including cleft lip with/without cleft palate (CL/P) and cleft palate (CP), have a complex and heterogeneous etiology. Case-parent trios from three populations were used to study genes spanning chromosome 2, where single nucleotide polymorphic (SNP) markers were analyzed individually and as haplotypes. Case-parent trios from three populations (74 from Maryland, 64 from Singapore and 95 from Taiwan) were genotyped for 962 SNPs in 104 genes on chromosome 2, including two well-recognized candidate genes: TGFA and SATB2. Individual SNPs and haplotypes (in sliding windows of 2-5 SNPs) were used to test for linkage and disequilibrium separately in CL/P and CP trios. A novel candidate gene (ZNF533) showed consistent evidence of linkage and disequilibrium in all three populations for both CL/P and CP. SNPs in key regions of ZNF533 showed considerable variability in estimated genotypic odds ratios and their significance, suggesting allelic heterogeneity. Haplotype frequencies for regions of ZNF533 were estimated and used to partition genetic variance into among-and within-population components. Wright's fixation index, a measure of genetic diversity, showed little difference between Singapore and Taiwan compared with Maryland. The tensin-1 gene (TNS1) also showed evidence of linkage and disequilibrium among both CL/P and CP trios in all three populations, albeit at a lower level of significance. Additional genes (VAX2, GLI2, ZHFX1B on 2p; WNT6-WNT10A and COL4A3-COL4A4 on 2q) showed consistent evidence of linkage and disequilibrium only among CL/P trios in all three populations, and TGFA showed significant evidence in two of three populations.
A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.