SummaryA common problem for genome-wide association analysis (GWAS) is lack of power for detection of quantitative trait loci (QTLs) and precision for fine mapping. Here, we present a statistical method, termed single-step GBLUP (ssGBLUP), which increases both power and precision without increasing genotyping costs by taking advantage of phenotypes from other related and unrelated subjects. The procedure achieves these goals by blending traditional pedigree relationships with those derived from genetic markers, and by conversion of estimated breeding values (EBVs) to marker effects and weights. Additionally, the application of mixed model approaches allow for both simple and complex analyses that involve multiple traits and confounding factors, such as environmental, epigenetic or maternal environmental effects. Efficiency of the method was examined using simulations with 15 800 subjects, of which 1500 were genotyped. Thirty QTLs were simulated across genome and assumed heritability was 0 . 5. Comparisons included ssGBLUP applied directly to phenotypes, BayesB and classical GWAS (CGWAS) with deregressed proofs. An average accuracy of prediction 0 . 89 was obtained by ssGBLUP after one iteration, which was 0 . 01 higher than by BayesB. Power and precision for GWAS applications were evaluated by the correlation between true QTL effects and the sum of m adjacent single nucleotide polymorphism (SNP) effects. The highest correlations were 0 . 82 and 0 . 74 for ssGBLUP and CGWAS with m=8, and 0 . 83 for BayesB with m=16. Standard deviations of the correlations across replicates were several times higher in BayesB than in ssGBLUP. The ssGBLUP method with marker weights is faster, more accurate and easier to implement for GWAS applications without computing pseudo-data.
This work studied differences between expected (calculated from pedigree) and realized (genomic, from markers) relationships in a real population, the influence of quality control on these differences, and their fit to current theory. Data included 4940 pure line chickens across five generations genotyped for 57,636 SNP. Pedigrees (5762 animals) were available for the five generations, pedigree starting on the first one. Three levels of quality control were used. With no quality control, mean difference between realized and expected relationships for different type of relationships was ≤ 0.04 with standard deviation ≤ 0.10. With strong quality control (call rate ≥ 0.9, parent-progeny conflicts, minor allele frequency and use of only autosomal chromosomes), these numbers reduced to ≤ 0.02 and ≤ 0.04, respectively. While the maximum difference was 1.02 with the complete data, it was only 0.18 with the latest three generations of genotypes (but including all pedigrees). Variation of expected minus realized relationships agreed with theoretical developments and suggests an effective number of loci of 70 for this population. When the pedigree is complete and as deep as the genotypes, the standard deviation of difference between the expected and realized relationships is around 0.04, all categories confounded. Standard deviation of differences larger than 0.10 suggests bad quality control, mistakes in pedigree recording or genotype labelling, or insufficient depth of pedigree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.