In MIMO radar, existing sparse imaging algorithms commonly vectorize the receiving data, which will destroy the multi-dimension structure of signal and cause the algorithm performance decline. In this paper, the sparsity characteristic and multi-dimension characteristic of signals are considered simultaneously and a new compressive sensing imaging algorithm named tensor-based match pursuit (TMP) is proposed. Firstly, MIMO radar tensor signal model is established to eliminate "dimension disaster". Then, exploiting tensor decomposition to process tensor data sets, tensor-based match pursuit is formulated for multi-dimension sparse signal recovery. Simulation results validates that the proposed method can accomplish high-resolution imaging correctly compared with conventional greedy sparse recovery algorithms. Additionally, under fewer snapshots condition, RMSE of proposed method is lower than other sparse recovery algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.