Parathyroid hormone-related peptide (PTHrP) is a mediator of cellular growth and differentiation as well as a cause of malignancy-induced hypercalcemia. Most of the actions of PTHrP have been attributed to its interaction with a specific cell surface receptor that binds the N-terminal domain of the protein. Here we present evidence that PTHrP promotes some of its cellular effects by translocating to the nucleolus. Localization of transiently expressed PTHrP to the nucleolus was dependent on the presence of a highly basic region at the carboxyl terminus of the molecule that bears homology to nucleolar targeting sequences identified within human retroviral (human immunodeficiency virus type 1 and human T-cell leukemia virus type 1) regulatory proteins. Endogenous PTHrP also localized to the nucleolus in osseous cells in vitro and in vivo. Moreover, expression of PTHrP in chondrocytic cells (CFK2) delayed apoptosis induced by serum deprivation, and this effect depended on the presence of an intact nucleolar targeting signal. The present findings demonstrate a unique intracellular mode of PTHrP action and a novel mechanism by which this peptide growth factor may modulate programmed cell death.
Abstract. To elucidate the role of PTHrP in skeletal development, we examined the proximal tibial epiphysis and metaphysis of wild-type (PTHrP-normal) 18-19-d-old fetal mice and of chondrodystrophic litter mates homozygous for a disrupted PTHrP allele generated via homologous recombination in embryonic stem cells (PTHrP-depleted). In the PTHrP-normal epiphysis, immunocytochemistry showed PTHrP to be localized in chondrocytes within the resting zone and at the junction between proliferative and hypertrophic zones. In PTHrP-depleted epiphyses, a diminished [3H]thymidine-labeling index was observed in the resting and proliferative zones accounting for reduced numbers of epiphyseal chondrocytes and for a thinner epiphyseal plate. In the mutant hypertrophic zone, enlarged chondrocytes were interspersed with clusters of cells that did not hypertrophy, but resembled resting or proliferative chondrocytes. Although the overall content of type II collagen in the epiphyseal plate was diminished, the lacunae of these non-hypertrophic chondrocytes did react for type II collagen. Moreover, cell membrane-associated chondroitin sulfate immunoreactivity was evident on these cells. Despite the presence of alkaline phosphatase activity on these nonhypertrophic chondrocytes, the adjacent cartilage matrix did not calcify and their persistence accounted for distorted chondrocyte columns and sporadic distribution of calcified cartilage. Consequently, in the metaphysis, bone deposited on the irregular and sparse scaffold of calcified cartilage and resulted in mixed spicules that did not parallel the longitudinal axis of the tibia and were, therefore, inappropriate for bone elongation. Thus, PTHrP appears to modulate both the proliferation and differentiation of chondrocytes and its absence alters the temporal and spatial sequence of epiphyseal cartilage development and of subsequent endochondral bone formation necessary for normal elongation of long bones. p ARATHYROID hormone-related peptide (PTHrP) ~ was originally identified as a pathogenetic factor for malignancy-associated hypercalcemia (Suva et al., 1987;Burtis et al., 1987;Strewler et al., 1987). The homology of the NH2-terminal region of PTHrP with the corresponding domain of parathyroid hormone (PTH), and the resultant capacity of both molecules to interact with a common receptor (Jiippner et al., 1991) appear to account for the ability of
Longitudinal sections through the incisors of the rat show a continuous layer of ameloblasts on the labial surface of the tooth. This layer contains the entire sequence of developmental stages in enamel production. Using 1 pm Epon sections from the upper and lower incisors of 100 gm male rats, the ameloblast layer was divided into three main zones which were themselves subdivided into regions: ( 1 ) Presecretorg zone which includes (a) These regions are readily identified using clear cut morphological criteria. Length measurements made on a group of 40 rats established the reproducibility of this classification. Therefore, this classification will be used as a basis for future studies of cell population kinetics.
Although apparently phenotypically normal at birth, mice heterozygous for inactivation of the gene encoding parathyroid hormone-related peptide (PTHrP) develop haplotype insufficiency by 3 months of age. In addition to histologic and morphologic abnormalities similar to those seen in homozygous mutants, heterozygous animals demonstrated alterations in trabecular bone and bone marrow. These included metaphyseal bone spicules which were diminished in volume, irregularly distributed, and less well developed than those seen in age-matched controls as well as bone marrow, which contained an inordinate number of adipocytes. A substantial reduction in PTHrP mRNA was detected in heterozygous tissue, while circulating parathyroid hormone (PTH) and calcium concentrations were normal. Thus, while a physiologic concentration of PTH was capable of maintaining calcium homeostasis, it was incapable of compensating for PTHrP haploinsufficiency in developing bone. In normal animals, both PTHrP and the PTH/PTHrP receptor were expressed predominantly in chondrocytes situated throughout the proliferative zone of the tibial growth plate. In the metaphysis, the PTH/PTHrP receptor was identified on osteoblasts and preosteoblastic cells situated in the bone marrow, while PTHrP was expressed only by osteoblasts. These observations indicate that postnatal bone development involves susceptible pathways that display exquisite sensitivity to critical levels of PTHrP and imply that the skeletal effects of PTH are influenced by locally produced PTHrP. Moreover, identification of both the ligand and its N-terminal receptor in metaphyseal osteoblasts and their progenitors suggests an autocrine/paracrine role for the protein in osteoblast differentiation and/or function. Impairment in this function as a consequence of PTHrP haploinsufficiency may critically influence the course of bone formation, resulting in altered trabecular architecture and perhaps low bone mass and increased bone fragility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.