We report a previously undescribed bacterial behavior termed electrokinesis . This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO 2 particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO 2 particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell.
Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.
A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA). It is the result of a series of “run-and-reversal” events enabled by modulation of swimming speed and direction. The model proposed that the swimming cells constantly sense their surroundings with specialized outer membrane cytochromes capable of extracellular electron transport (EET). Up to this point, neither the congregation nor attachment behavior have been studied in any other strains. In this study, the wild type of S. oneidensis MR-1 and several deletion mutants as well as eight other Shewanella strains (Shewanella putrefaciens CN32, S. sp. ANA-3, S. sp. W3-18-1, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Shewanella denitrificans OS217, Shewanella baltica OS155, and Shewanella frigidimarina NCIMB400) were screened for the ability to congregate. To monitor congregation and attachment, specialized cell-tracking techniques, as well as a novel cell accumulation after photo-bleaching (CAAP) confocal microscopy technique were utilized in this study. We found a strong correlation between the ability of strain MR-1 to accumulate on mineral surface and the presence of key EET genes such as mtrBC/omcA (SO_1778, SO_1776, and SO_1779) and gene coding for methyl-accepting protein (MCPs) with Ca+ channel chemotaxis receptor (Cache) domain (SO_2240). These EET and taxis genes were previously identified as essential for characteristic run and reversal swimming around IEA surfaces. CN32, ANA-3, and PV-4 congregated around both Fe(OH)3 and MnO2. Two other Shewanella spp. showed preferences for one oxide over the other: preferences that correlated with the metal content of the environments from which the strains were isolated: e.g., W3-18-1, which was isolated from an iron-rich habitat congregated and attached preferentially to Fe(OH)3, while SB2B, which was isolated from a MnO2-rich environment, preferred MnO2.
We have successfully performed bacterial reduction of an iron-containing outcrop sand sample under static conditions using Shewanella genus bacteria. Adsorption of an anionic (alkyl benzyl sulfonate) surfactant was around 7-times lower on treated outcrop samples. Most of this reduction (~3X) occurs over the first 3-4 days of incubation, contemporaneously with iron dissolution and limited biofilm formation. Continued incubation after this point attends the formation of significant biofilm, as well as a continued decrease in surfactant adsorption. Non-iron-reducing bacteria also formed biofilm on outcrop samples, yielding a significant (though smaller) decrease in surfactant adsorption. Microscopy demonstrates preferential attachment of biofilm to iron minerals in a heterogenous outrop sample. Repeated rinsing results in a removal of biofilm formed by iron-reducing or bacteria and a corresponding increase in surfactant adsorption to about 1/3 to 1/2 of original levels. This proof of concept for a bacterial core restoration method using iron-reducing bacteria is considered successful, with the caveat that care must be taken to minimize and/or remove biofilm in order to avoid biofilm-related artifacts. Implications of these results for the determination of reservoir rock-fluid properties in biologically-active reservoirs are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.