Abstract:We introduce a general hydrodynamic model to study the stability of lipid films against thermal fluctuations. As one novel aspect the model accounts before all for a complete intrinsic surface rheology of the film interfaces. Thus the rheological behaviour of the surface adsorbed lipids is modelled which screen the hydrophobic film interior against the aqueous exterior. For coloured films we demonstrate first the influence of electrical forces on the dynamics and film stability. For that we perform a linear stability analysis on a simplified mechanically symmetric film with i) symmetric surface charge distribution and ii) linear electric potential drop across the film. Based on the complete film model we then categorize the complete set of solutions of the linearized equations of motion and we study the growth rates of unstable film modes. Finally we discuss the stability properties of a black film after introducing a repulsive mechanism due to the steric hindrance of the interfacial lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.