In October 2017, most European countries reported unique atmospheric detections of aerosol-bound radioruthenium (106Ru). The range of concentrations varied from some tenths of µBq·m−3 to more than 150 mBq·m−3. The widespread detection at such considerable (yet innocuous) levels suggested a considerable release. To compare activity reports of airborne 106Ru with different sampling periods, concentrations were reconstructed based on the most probable plume presence duration at each location. Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation). The 106Ru age was estimated to be about 2 years. It exhibited highly soluble and less soluble fractions in aqueous media, high radiopurity (lack of concomitant radionuclides), and volatility between 700 and 1,000 °C, thus suggesting a release at an advanced stage in the reprocessing of nuclear fuel. The amount and isotopic characteristics of the radioruthenium release may indicate a context with the production of a large 144Ce source for a neutrino experiment.
Abstract. 10Be ice core measurements are an important tool for paleoclimate research, e.g., allowing for the reconstruction of past solar activity or changes in the geomagnetic dipole field. However, especially on multi-millennial timescales, the share of production and climate-induced variations of respective 10Be ice core records is still up for debate. Here we present the first quantitative climatological model of the 10Be ice concentration up to the glacial–interglacial timescale. The model approach is composed of (i) a coarse resolution global atmospheric transport model and (ii) a local 10Be air–firn transfer model. Extensive global-scale observational data of short-lived radionuclides as well as new polar 10Be snow-pit measurements are used for model calibration and validation. Being specifically configured for 10Be in polar ice, this tool thus allows for a straightforward investigation of production- and non-production-related modulation of this nuclide. We find that the polar 10Be ice concentration does not immediately record the globally mixed cosmogenic production signal. Using geomagnetic modulation and revised Greenland snow accumulation rate changes as model input, we simulate the observed Greenland Summit (GRIP and GISP2) 10Be ice core records over the last 75 kyr (on the GICC05modelext timescale). We show that our basic model is capable of reproducing the largest portion of the observed 10Be changes. However, model–measurement differences exhibit multi-millennial trends (differences up to 87% in case of normalized to the Holocene records) which call for closer investigation. Focusing on the (12–37) b2k (before the year AD 2000) period, mean model–measurement differences of 30% cannot be attributed to production changes. However, unconsidered climate-induced changes could likely explain the model–measurement mismatch. In fact, the 10Be ice concentration is very sensitive to snow accumulation changes. Here the reconstructed Greenland Summit (GRIP) snow accumulation rate record would require revision of +28% to solely account for the (12–37) b2k model–measurement differences.
Traces of particulate radioactive iodine (I) were detected in the European atmosphere in January/February 2017. Concentrations of this nuclear fission product were very low, ranging 0.1 to 10 μBq m except at one location in western Russia where they reached up to several mBq m. Detections have been reported continuously over an 8-week period by about 30 monitoring stations. We examine possible emission source apportionments and rank them considering their expected contribution in terms of orders of magnitude from typical routine releases: radiopharmaceutical production units > sewage sludge incinerators > nuclear power plants > spontaneous fission of uranium in soil. Inverse modeling simulations indicate that the widespread detections of I resulted from the combination of multiple source releases. Among them, those from radiopharmaceutical production units remain the most likely. One of them is located in Western Russia and its estimated source term complies with authorized limits. Other existing sources related toI use (medical purposes or sewage sludge incineration) can explain detections on a rather local scale. As an enhancing factor, the prevailing wintertime meteorological situations marked by strong temperature inversions led to poor dispersion conditions that resulted in higher concentrations exceeding usual detection limits in use within the informal Ring of Five (Ro5) monitoring network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.