Purpose:The Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k f clin ,f msr Q clin ,Q msr ) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because kvalues for single detector position measurements are influenced by several factors, a new theoretical formalism for integrateddetector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs_chamber code was used to investigate the variation of k f clin ,f msr Q clin ,Q msr with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k f clin ,f msr Q clin ,Q msr ) was shown to depend strongly on detector off-axis position and detector azimuthal angle in addition to field size. In line with previous studies, substantial interdetector variation was also observed. However, it was demonstrated that by considering DAPs rather than single-detector-position dose measurements the high level of interdetector variation could be eliminated. Under small field conditions, mass density was found to be the principal determinant of water equivalence. Additionally, the mass densities of components outside the sensitive volumes were found to influence the detector response.values for existing detector designs depend on a host of variables and their calculation typically relies on the use of time-intensive Monte Carlo methods. Future moves toward density-compensated detector designs or DAP based protocols may simplify the methodology of small field dosimetry.
Dosimeters often consist of several components whose mass densities differ substantially from water. These components cause small-field correction factors to vary significantly as lateral electronic equilibrium breaks down. Even amongst instruments designed for small-field dosimetry, inter-detector variation in the correction factors associated with very small (∼0.5 cm) fields can amount to tens of per cent. For a given dosimeter, small-field correction factors vary not only with field size but also with detector azimuthal angle and position within the field. Furthermore the accurate determination of these factors typically requires time-intensive Monte Carlo simulations. Thus, if achievable, 'correction factor free' small-field dosimetry would be highly desirable. This study demonstrates that a new generation of mass-density compensated detectors could take us towards this goal. Using a 6 MV beam model, it shows that 'mass-density compensation' can be utilized to improve the performance of a range of different detectors under small-field conditions. Non-sensitive material of appropriate mass-density is incorporated into detector designs in order to make the instruments behave as if consisting only of water. The dosimeter perturbative effects are then reduced to those associated with volume averaging. An even better solution-which modifies detectors to obtain profiles that look like those measured by a point-like water structure-is also considered. Provided that adequate sensitivity can be achieved for a small measurement volume, this study shows that it may be possible to use mass-density compensation (and Monte Carlo-driven design) to produce a solid-state dosimeter/ionization chamber with a near-perfect non-equilibrium response.
Standard commercial diode detectors over-respond within small radiation fields, an effect largely attributable to the relatively high mass-density of silicon. However, Monte Carlo studies can be used to optimise dosimeter designs and have demonstrated that 'mass-density compensation'-for example, introducing a low-density air-gap upstream of a diode's high-density silicon volume-can substantially improve instrument response. In this work we used egs_chamber Monte Carlo simulations to predict the ideal air-gap thickness for a PTW 60017 unshielded diode detector. We then developed a prototype instrument incorporating that air-gap and, for a 6 MV linac, tested it experimentally against EBT3 film. We also tested a further three prototypes with different air-gap thicknesses. Our results demonstrate that for a 10 × 10 cm(2) reference field the DiodeAir, a PTW 60017 diode with a built-in air-gap of 1 mm, has on-axis correction factors near unity. Laterally the DiodeAir performs very well off-axis and reports FWHM and penumbra values consistent with those measured using EBT3. For PDD measurement, the performance of the DiodeAir matches that of the original PTW 60017. The experimental focus of this work was 6 MV but we also simulated the on-axis response of the DiodeAir within 15 MV beams and found that our modification proved robust to this substantial increase in beam energy. However, the original diode 60017 does exhibit low energy scatter dependencies and may over-respond to high linac dose-rates such that applying the mass-density compensation method to an alternative instrument (particularly a diamond detector) could ultimately take us even closer to the small-field ideal.
Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (AUC, , and BAT) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer. Functional parameters AUC and primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated withAUC and ForAUC, structural parameters also modified each other's effect. Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers to improve their biological interpretation and clinical utility..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.