The CDK inhibitor p21 (WAF-1/CIP-1/SDI-1) has been implicated in DNA damage-induced p53-mediated G~ arrest, as well as in physiological processes, such as cell differentiation and senescence, that do not involve p53 function. To determine the impact of p21 on normal development and cell-cycle regulation in vivo, we have generated transgenic mice that abundantly express p21 specifically in hepatocytes. During postnatal liver development, when transgenic p21 protein becomes detectable, hepatocyte proliferation is inhibited dramatically. This disturbance causes a reduction in the overall number of adult hepatocytes, resulting in aberrant tissue organization, runted liver and body growth, and increased mortality. The transgenic p21 protein is associated with most, if not all, of the cyclin D1-CDK4 in liver but not significantly with other cyclin/CDK proteins, indicating the importance of cyclin D1-CDK4 function in normal liver development. The appearance of large polyploid nuclei in some hepatocytes indicates that p21 may also cause arrest during the G2 phase of the cell cycle. Significantly, partial hepatectomy failed to stimulate hepatocytes to proliferate in p21 transgenic animals. These results provide the first in vivo evidence that appropriate p21 levels are critical in normal development and further implicate p21 in the control of multiple cell-cycle phases.
We have inactivated pRb, p107, and p130 in astrocytes by transgenic expression of T(121) (a truncated SV40 T antigen) under the GFAP promoter. Founder mice died perinatally with extensive expansion of neural precursor and anaplastic astrocyte populations. In astrocytes, aberrant proliferation and extensive apoptosis were induced. Using a conditional allele of T(121), early lethality was circumvented, and adult mice developed high-grade astrocytoma, in which regions of decreased apoptosis expressed activated Akt. Indeed, astrocytoma development was accelerated in a PTEN(+/-), but not p53(+/-), background. These studies establish a highly penetrant preclinical model for astrocytoma based on events observed in the human disease and further provide insight into the role of PTEN mutation in astrocytoma progression.
Retinoblastoma 1 (pRb) and the related pocket proteins, retinoblastoma-like 1 (p107) and retinoblastoma-like 2 (p130) (pRbf, collectively), play a pivotal role in regulating eukaryotic cell cycle progression, apoptosis, and terminal differentiation. While aberrations in the pRb-signaling pathway are common in human cancers, the consequence of pRbf loss in the mammary gland has not been directly assayed in vivo. We reported previously that inactivating these critical cell cycle regulators in divergent cell types, either brain epithelium or astrocytes, abrogates the cell cycle restriction point, leading to increased cell proliferation and apoptosis, and predisposing to cancer. Here we report that mouse mammary epithelium is similar in its requirements for pRbf function; Rbf inactivation by T121, a fragment of SV40 T antigen that binds to and inactivates pRbf proteins, increases proliferation and apoptosis. Mammary adenocarcinomas form within 16 mo. Most apoptosis is regulated by p53, which has no impact on proliferation, and heterozygosity for a p53 null allele significantly shortens tumor latency. Most tumors in p53 heterozygous mice undergo loss of the wild-type p53 allele. We show that the mechanism of p53 loss of heterozygosity is not simply the consequence of Chromosome 11 aneuploidy and further that chromosomal instability subsequent to p53 loss is minimal. The mechanisms for pRb and p53 tumor suppression in the epithelia of two distinct tissues, mammary gland and brain, are indistinguishable. Further, this study has produced a highly penetrant breast cancer model based on aberrations commonly observed in the human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.