The use of transition metal oxides and hydroxides in supercapacitors can yield high specific capacity electrodes. However, the effect of interaction between active material and current collector has remained unexplored. Here the behaviour of electrodeposited hexagonal cobalt hydroxide nanosheets on a variety of substrates was investigated, and the resulting valence bonding, morphological evolutions and phase transformations examined. It is shown that the electrochemical activity of the face centred cubic (FCC) Ni substrate dramatically decreases cyclability, the FCC Cu substrate also demonstrates decreased performance, and hexagonal carbon nanofibre (CNF) and Ti substrates exhibit far more stability. The miscellaneous roles of valence bonding, redox reactions and crystal structure mismatch between active material and current collector are examined, and their consequences discussed. Using the resulting insights into performance criteria, it was possible to select a suitable substrate for the fabrication of an asymmetric supercapacitor. The high performance and stability of the device demonstrates the usefulness of this approach, and the utility of applying these insights to energy storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.