Abstract. The nighttime light (NTL) remote sensed imagery has been applied in monitoring human activities from many perspectives. As the two most widely used NTL satellites, the Defense Meteorological Satellite Program (DMSP) Operational Linescan System and the Suomi National Polar-orbiting Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) have different spatial and radiometric resolutions. Thus, some long-time series analysis cannot be conducted without effective and accurate cross-calibration of these two datasets. In this study, we proposed a deep-learning based model to simulate VIIRS-liked DMSP NTL data by integrating the enhanced vegetation index (EVI) data product from MODIS. By evaluating the spatial pattern of the results, the modified Self-Supervised Sparse-to-Dense networks delivered satisfying results of spatial resolution downscaling. The quantitative analysing of the simulated VIIRS-liked DMSP NTL with original VIIRS NTL showed a good consistency at the pixel level of four selected sub datasets with R2 ranging from 0.64 to 0.76, and RMSE ranging from 3.96-9.55. Our method presents that the deep learning model can learn from relatively raw data instead of fine processed data based on expert knowledge to cross-sensor calibration and simulation NTL data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.