Presently, nanoparticles are mixed into lubricants to enhance the lubricating and cooling properties. Some research works are available on minimum quantity lubrication (MQL) machining performance of nanofluids suspended with MoS2, Al2O3 and xGnP nanoparticles. However, the deficiency has been found in applying of metal particles like copper (Cu) nanoparticles. In this research, nanofluids have been prepared by mixing four types of nanoparticle (Cu, Graphite, MoS2 and Al2O3) into natural-77 vegetable oil with two concentrations (1 % and 2 %). Taguchi's orthogonal array has used for experimental design. The machining performance of nanofluids are evaluated with regard to the reduction in cutting force and surface roughness during MQL milling of Ti-6Al-4V alloys. Analysis of variance (ANOVA) has carried out to investigate the relative influence of machining parameters. From the analysis, Cu and Graphite nanoparticles have shown higher effects for reducing cutting force and surface roughness. The results of ANOVA have shown that the type and concentration of nanoparticles influence the cutting force significantly. The confirmation tests have carried out and found that copper-nanofluid reduced cutting force and surface roughness by 8.84 % and 14.74 %, respectively. Graphite-nanofluid reduced cutting force and surface roughness by 5.51 % and 21.96 %, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.