This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.
CuBe composite wires of 100 μm in diameter coated with a layer of NiCoP were prepared by a chemical plating method under DC current (CPUDC). The influences of DC current on coating morphology, deposition rate, composition, giant magneto-impedance (GMI) effect and magnetic properties were investigated. It was shown that the circumferential domain structure of coating layer was induced by the DC current going through the wires. A maximum GMI ratio of 870% was obtained in the composite wire prepared under 150 mA and tested at 180 kHz. It is 30 times higher than that of the composite wire plated in the same condition by conventional chemical plating method, indicating that CPUDC is an easy and effective approach to obtain composite wires and its applications will be further extended on magnetic sensors.
Abstract:CuBe composite wires of 100 μm in diameter coated with a layer of NiCoP were prepared by a chemical plating method under DC current (CPUDC). The influences of DC current on coating morphology, deposition rate, composition, giant magneto-impedance (GMI) effect and magnetic properties were investigated. It was shown that the circumferential domain structure of coating layer was induced by the DC current going through the wires. A maximum GMI ratio of 870% was obtained in the composite wire prepared under 150 mA and tested at 180 kHz. It is 30 times higher than that of the composite wire plated in the same condition by conventional chemical plating method, indicating that CPUDC is an easy and effective approach to obtain composite wires and its applications will be further extended on magnetic sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.