s-ALCL development may be predicted by the precedence and concurrence of intractable paraneoplastic erythrodermic and ulcerative skin lesions, as reported in our two cases.
The Student's t-test was used to assess the statistical significance of differences between mean values of healthy subjects and patients. *P < 0.05.Abbreviations: CRTH2, chemoattractant receptor-homologous molecule expressed on Th2 cells; PGD2 prostaglandin D2.
Bacteriophages (phages), or bacterial viruses, are the most abundant and diverse biological entities that impact the global ecosystem. Recent advances in metagenomics have revealed their rampant abundance in the biosphere. A fundamental aspect of bacteriophages that remains unexplored in metagenomic data is the process of recombination as a driving force in evolution that occurs among different viruses within the same bacterial host. Here, we systematically examined signatures of recombination in every gene from 211 species-level viral groups in a recently obtained dataset of the Earth’s virome that contain corresponding information on the host bacterial species. Our study revealed that signatures of recombination are widespread (84%) among the diverse viral groups. We identified 25 recombination-intense viral groups, widely distributed across the viral taxonomy, and present in bacterial species living in the human oral cavity. We also revealed a significant inverse association between the recombination-intense viral groups and Type II restriction endonucleases, that could be effective in reducing recombination among phages in a cell. Furthermore, we identified recombination-intense genes that are significantly enriched for encoding phage morphogenesis proteins. Changes in the viral genomic sequence by recombination may be important to escape cleavage by the host bacterial immune systems.
Chronic nonbacterial osteomyelitis is a rare bone disorder that can be found in the jaw. It is often associated with systemic conditions, including autoimmune deficiencies. However, little is known about how the genetic and immunologic background of patients influences the disease. Here, we focus on human leukocyte antigen (HLA), killer cell immunoglobulin-like receptors (KIRs), and their specific combinations that have been difficult to analyze owing to their high diversity. We employed a recently developed technology of simultaneous typing of HLA alleles and KIR haplotype and investigated alleles of the 35 HLA loci and KIR haplotypes composed of centromeric and telomeric motifs in 18 cases and 18 controls for discovery and 472 independent controls for validation. We identified an amino acid substitution of threonine at position 94 of HLA-C in combination with the telomeric KIR genotype of haplotype tA01/tB01 that had significantly higher frequency (>20%) in the case population than in both control populations. Multiple logistic regression analysis based on a dominant model with adjustments for age and sex revealed and validated its statistical significance and high predictive accuracy (C-statistic ≥0.85). Structure-based analysis revealed that the combination of the amino acid change in HLA-C and the telomeric genotype tA01/tB01 could be associated with lower stability of HLA-C. This is the first case-control study of a rare disease that employed the latest sequencing technology enabling simultaneous typing and investigated amino acid polymorphisms at HLA loci in combination with KIR haplotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.