It is known that the lipid-lowering agent pravastatin, which is not metabolized by cytochrome P450, is eliminated as an unchanged drug in bile and urine. It is interesting to note that the non-renal clearance of pravastatin in end-stage renal failure patients is decreased compared with that of healthy volunteers. This study investigated the influence of uremic serum and toxins on the transport mechanisms of pravastatin to elucidate the cause of decreased non-renal clearance in end-stage renal failure patients. Caco-2 and Hep3B cells were used as models of intestinal epithelial cells and hepatocytes respectively. Normal and uremic serum were deproteinized by treatment with methanol. 3-Carboxy-4-methyl-5propyl-2-furanpropanoic acid (CMPF), hippuric acid, indole-3-acetic acid, 3-indoxyl sulfate, and p-cresol were chosen as uremic toxins. Uremic serum-treated Caco-2 cells exhibited significantly increased accumulation of pravastatin and significantly decreased expression of MRP2 mRNA compared with normal serum-treated Caco-2 cells. In addition, the expression of MRP2 mRNA tended to decrease in cells treated with CMPF, indole-3-acetic acid, or 3-indoxyl sulfate. Uremic serum-treated Hep3B cells showed a significantly decreased initial uptake rate of pravastatin; furthermore, the expressions of OATP1B1 and OATP2B1 mRNA were decreased compared to normal serum-treated Hep3B cells. These results suggest that the decrease in the non-renal clearance of pravastatin in end-stage renal failure patients is partly induced by the downregulation of intestinal MRP2 and hepatic OATP1B1 and/or OATP2B1 by various uremic toxins in end-stage renal failure patients.
These results suggest that decreased the metabolic clearance of losartan in patients with end-stage renal failure is partly due to high concentrations of 3-indoxyl sulfate and p-cresol.
We present studies on the structure and chemical states of a catalyst developed by immobilizing palladium on S-terminated GaAs͑001͒. Hard x-ray photoelectron spectroscopy ͑HX-PES͒ of core-level and valence band photoemission consistently indicates that the organopalladium molecules are reduced on the surface yielding Pd nanoparticles with a metallic nature. This finding is supported by high-resolution observations using scanning electron microscopy and backscattered electron image. HX-PES results also reveal that a portion of S atoms forming the S-termination is oxidized during the formation of Pd nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.