We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100 nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4 K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
We report on the fabrication and characterization of symmetric nanowire-based Josephson junctions, that is, Al- and Nb-based junctions, and asymmetric junctions employing superconducting Al and Nb. In the symmetric junctions, a clear and pronounced Josephson supercurrent is observed. These samples also show clear signatures of subharmonic gap structures. At zero magnetic field, a Josephson coupling is found for the asymmetric Al/InAs-nanowire/Nb junctions as well. By applying a magnetic field above the critical field of Al or by raising the temperature above the critical temperature of Al the junction can be switched to an effective single-interface superconductor/nanowire structure. In this regime, a pronounced zero-bias conductance peak due to reflectionless tunneling has been observed.
The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e(2)/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.