To obtain the optimal solution for the performance of the turbofan engine using infrared stealth technology, an engine mathematical model with a backward infrared radiation intensity calculation module was established. The effects of infrared suppression measures on the performance of turbofan engines were analysed. Based on the multi-objective particle swarm optimisation (MOPSO) algorithm, the optimal solution for the performance in the cruise state of the reference engine refitted with the infrared radiation suppression module was obtained; Further, through the multiple design points (MDPs) concept, the thermal cycle optimisation design of the turbofan engine was carried out. The results show that the integrated fully shielded guiding strut (IFSGS) with air film cooling had the ideal infrared suppression effect. Compared with the reference engine refitted with infrared radiation suppression module, the engine after cycle optimisation design could obtain better infrared stealth performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.