[1] The Japanese lunar mission, Selenological and Engineering Explorer (Kaguya), which was successfully launched on 14 September 2007, consists of a main satellite and two small satellites, Rstar and Vstar. Same-beam very long baseline interferometry (VLBI) observations of Rstar and Vstar were performed for 15.4 months from November 2007 to February 2009 using eight VLBI stations. In 2008, S band same-beam VLBI observations totaling 476 h on 179 days were undertaken. The differential phase delays were successfully estimated for most (about 85%) of the same-beam VLBI observation periods. The high success rate was mainly due to the continuous data series measuring the differential correlation phase between Rstar and Vstar. The intrinsic measurement error in the differential phase delay was less than 1 mm RMS for small separation angles and increased to approximately 2.5 mm RMS for the largest separation angles (up to 0.56 deg). The long-term atmospheric and ionospheric delays along the line of sight were reduced to a low level (several tens of milimeters) using the same-beam VLBI observations, and further improved through application of GPS techniques. Combining the eight-station (four Japanese telescopes of VLBI Exploration of Radio Astrometry and four international telescopes) S band same-beam VLBI data with Doppler and range data, the accuracy of the orbit determination was improved from a level of several tens of meters when only using Doppler and range data to a level of 10 m. As a preliminary test of the technique, the coefficient sigma degree variance of the lunar gravity field was compared with and without 4 months of VLBI data included. A significant reduction below around 10 deg (especially for the second degree) was observed when the VLBI data were included. These observations confirm that the VLBI data contribute to improvements in the accuracy of the orbit determination and through this to the lunar gravity field model.
Context. The early phase of the coalescence of supermassive black hole (SMBH) binaries from their host galaxies provides a guaranteed source of low-frequency (nHz−μHz) gravitational wave (GW) radiation by pulsar timing observations. These types of GW sources would survive the coalescing and be potentially identifiable. Aims. We aim to provide an outline of a new method for detecting GW radiation from individual SMBH systems based on the Sloan Digital Sky Survey (SDSS) observational results, which can be verified by future observations. Methods. Combining the sensitivity of the international Pulsar Timing Array (PTA) and the Square Kilometer Array (SKA) detectors, we used a binary population synthesis (BPS) approach to determine GW radiation from close galaxy pairs under the assumption that SMBHs formed at the core of merged galaxies. We also performed second post-Newtonian approximation methods to estimate the variation of the strain amplitude with time.Results. We find that the value of the strain amplitude h varies from about 10 −14 to 10 −17 using the observations of 20 years, and we estimate that about 100 SMBH sources can be detected with the SKA detector.
Abstract. Using a [1995][1996][1997][1998] data set of vector magnetograms, the magnetic field flux, shear angle of the transverse field and nonpotential energy of active regions were calculated. The evolution of these parameters were analyzed together with time series of the solar monthly sunspot relative number and area to study their relationships in the ascending phase of solar cycle 23. We find the magnetic flux and nonpotential energy have a good correlation with sunspot relative number and area. But the magnetic shear angle does not develop as above indices.
We present results of the analysis of NOAA 8668, which was observed successively by space satellite (SOHO) and ground-based observatories (BBSO, Huairou). The combined observation offers us a good example of a region observed from low to high solar atmosphere. Several flares and a sigmoid filament were observed in the AR, and we observed the sigmoid filament from its birth to disintegration. The configuration of the magnetic field of the AR changed quickly as well as the loops. From EIT movies, we can even judge the sign of the sigmoid filament's magnetic helicity. The forming and heating of the loops were the result of magnetic reconnection, and the corona seemed heated when the loops became opened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.