Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer.
Phytoseiid mites are considered the most effective natural enemies of pest mites. They also have been shown to attack pest thrips. It is unknown, however, whether phytoseiid mites can reduce high densities of Thrips flavidulus (Bagnall). We addressed this question by the study of functional and numerical responses. The aim of this research was to evaluate the potential predation success of the adults of three predatory mites, Neoseiulus cucumeris (Oudemans), Neoseiulus barkeri (Hughes), and Euseius nicholsi (Ehara & Lee), against the first-instar of T. flavidulus in a climatic chamber at five different temperatures. The results showed that the functional responses of those predators reflected the Holling type II functional response and were density dependent and positively related to temperature. For the three predatory mites, predation and successful attack rates increased with increasing temperature up to 26°C, reducing afterward. Handling time had the opposite trend. Reproductive ability also increased with an increase in temperature and prey consumption.
Aquaporin 2 (AQP2) is a small protein located in the collecting tubules of kidneys; it plays an important role in the concentration and production of urine. The aim of this study was to determine the expression level of the AQP2 gene in the kidney of broiler chickens after the administration of renal dose dopamine. Broiler chickens (25 days-old) were randomly divided into two groups (n=20 per group): intravenous administration of saline solution (control group) or renaldose dopamine (dopamine group). The expression and localization of the AQP2 gene were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC), respectively. The protein level of AQP2 was analyzed by western blot analysis. The dopamine group presented no significant difference (p>0.05) in the biochemical criterion or mRNA expression of AQP2 compared with the control group. However, AQP2 protein level was significantly reduced (p<0.05) in the membrane of renal tubular epithelial cells. In contrast, protein level was significantly increased (p<0.05) in the cytoplasm of the dopamine group compared with the control group. Moreover, AQP2 protein was apparently more distributed and localized in the cytoplasmic vacuoles than in the membranes of the kidney in the renaldose dopamine administered chickens group. In conclusion, present findings suggest that renal dose dopamine mediates the level of AQP2 protein via shuttle from the cell membrane to the cytoplasm rather than changing the expression of AQP2 gene to adjust the secretion and absorption of water in kidney.
Newcastle disease is a highly contagious disease responsible for major outbreaks and considerable economic losses in the poultry industry in China. There is still little information available regarding gene characterization of the NDV, especially in ducks and pigeons. Therefore, the aim of this study was to investigate NDV isolated from ducks and pigeons in Hubei, China. In this study, three NDVs from ducks and pigeons were isolated between 2013 and 2015.The fusion protein (F) gene of the NDV isolates was sequenced and phylogenetically analyzed. The clinical signs and gross histopathological lesions were examined. Phylogenetic analysis of these strains indicated that all the sequences are classified as genotype II. The isolates shared a 112 G-R-Q-G-R-L 117motif at the F protein cleavage site, indicating that these three isolates strains are lentogenic. Necropsy and histopathology showed the typical pathological changes. It was concluded that commercial ducks and pigeons in Hubei province carry lentogenic NDV strains with regular genetic divergence, indicating that these species may act as the main reservoirs of NDV in poultry. Therefore, strategies and surveillance should be undertaken to reduce the risk of ND outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.