Ex vivo-expanded cynomolgus monkey CD4+CD25+CD127− regulatory T cells (Treg) maintained Foxp3 demethylation status at the Treg-Specific Demethylation Region (TSDR), and potently suppressed T cell proliferation through 3 rounds of expansion. When CFSE- or VPD450-labeled autologous (auto) and non-autologous (non-auto) expanded Treg were infused into monkeys, the number of labeled auto-Treg in peripheral blood declined rapidly during the first week, but persisted at low levels in both normal and anti-thymocyte globulin plus rapamycin-treated (immunosuppressed; IS) animals for at least 3 weeks. By contrast, MHC-mismatched non-auto-Treg could not be detected in normal monkey blood or in blood of two out of the three IS monkeys by day 6 post-infusion. They were also more difficult to detect than auto-Treg in peripheral lymphoid tissue. Both auto- and non-auto-Treg maintained Ki67 expression early after infusion. Sequential monitoring revealed that adoptively-transferred auto-Treg maintained similarly high levels of Foxp3 and CD25 and low CD127 compared with endogenous Treg, although Foxp3 staining diminished over time in these non-transplanted recipients. Thus, infused ex vivo-expanded auto-Treg persist longer than MHC-mismatched non-auto-Treg in blood of non-human primates and can be detected in secondary lymphoid tissue. Host lymphodepletion and rapamycin administration did not consistently prolong the persistence of non-auto-Treg in these sites.
The ability of regulatory T cells (Treg) to prolong allograft survival and promote transplant tolerance in lymphodepleted rodents is well-established. Very few studies, however, have addressed the therapeutic potential of adoptively-transferred, CD4+CD25+CD127−Foxp3+ (Treg) in clinically-relevant large animal models. We infused ex vivo-expanded, functionally stable, non-selected Treg (up to a maximum cumulative dose of 1.87 billion cells) into anti-thymocyte globulin-lymphodepleted, MHC-mismatched cynomolgus monkey heart graft recipients before homeostatic recovery of effector T cells. The monkeys also received tacrolimus, anti-IL-6R mAb and tapered rapamycin maintenance therapy. Treg administration in single or multiple doses during the early post-surgical period (up to one month post-transplant), when host T cells were profoundly depleted, resulted in inferior graft function compared with controls. This was accompanied by increased incidences of effector memory T cells, enhanced IFNγ production by host CD8+ T cells, elevated levels of proinflammatory cytokines and anti-donor alloAb. The findings caution against infusion of Treg during the early post-transplant period following lymphodepletion. Despite marked but transient increases in Treg relative to endogenous effector T cells and use of reputed “Treg-friendly” agents, the host environment/immune effector mechanisms instigated under these conditions can perturb rather than favor the potential therapeutic efficacy of adoptively-transferred Treg.
Alemtuzumab (Campath-1H) is a humanized monoclonal antibody (Ab) directed against CD52 that depletes lymphocytes and other leukocytes, mainly by complement-dependent mechanisms. We investigated the influence of alemtuzumab (i) on ex vivo-expanded cynomolgus monkeys regulatory T cells (Treg) generated for prospective use in adoptive cell therapy and (ii) on naturally-occurring Treg following alemtuzumab infusion. Treg were isolated from PBMC and lymph nodes and expanded for two rounds. CD52 expression, binding of alemtuzumab, and both complement-mediated killing and Ab-dependent cell-mediated cytotoxicity (ADCC) were compared between freshly-isolated and expanded Treg and effector T cells. Monkeys undergoing allogeneic heart transplantation given alemtuzumab were monitored for Treg and serum alemtuzumab activity. Ex vivo-expanded Treg showed progressive downregulation of CD52 expression, absence of alemtuzumab binding, minimal change in complement inhibitory protein (CD46) expression and no complement-dependent killing or ADCC. Infusion of alemtuzumab caused potent depletion of all lymphocytes, but a transient increase in the incidence of circulating Treg. After infusion of alemtuzumab, monkey serum killed fresh PBMC, but not expanded Treg. Thus, expanded cynomolgus monkey Treg are resistant to alemtuzumab-mediated, complement-dependent cytotoxicity. Furthermore, our data suggest that these expanded monkey Treg can be infused into graft recipients given alemtuzumab without risk of complement-mediated killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.