The presence of a temperature difference changes the mode of motion of the fluid. The macroscopic motion of the fluid causes the relative displacement between the various parts of the fluid, which in turn affects the transfer of temperature in the medium. To investigate the effect of temperature transfer coupled fluid motion on chloride ion transport in concrete, a mesoscopic model of chloride ion transport in non-isothermal flow of concrete was established and compared with experimental data. Based on the finite element software, the influence of temperature transfer on the internal fluid motion and chloride ion transport of concrete was analyzed. And the effect of convective motion of fluid on the temperature transfer in concrete was studied. It is found that when the heating time is the same, the dynamic viscosity of the fluid in the concrete decreases with the increase of temperature; the chloride ion concentration increases with the increase of temperature at the same depth of concrete; when considering the influence of laminar flow, the temperature is transmitted faster in the concrete and exhibits uneven diffusion from high temperature to low temperature; non-isothermal flow promotes the diffusion of chloride ions in concrete, and the higher the temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.