The catalyst Pt/HKHUST-1 was used for synthesis 4-aminophenol (4-AP) by reducsion 4-nitrophenol (4-NP). Factors that affected to the reaction were tested: ratio 4-NP/NaBH4, temperature and time of the reaction. Changing the ratio of 4-NP/NaBH4 in the direction of increasing NaBH4, the reaction rate increases. However, it is acceptable to reduce the reaction rate when synthesizing with high concentration of reactants. The 4-AP synthesis is performed with ratio 4-NP/NaBH4 = 1/5, suitable time and temperature for this reaction is 60 minutes and 15 oC. The catalyst sample containing 2% Pt on HKUST-1 material was used to synthesize 4-AP with the yield of 65.3% (average 64.2%), the catalyst has good stability, can reused many times. The purity of 4-AP after refining was 99 %.
The catalyst Pt/HKHUST-1 was used for synthesis 4-aminophenol (4-AP) by reducsion 4-nitrophenol (4-NP). Factors that affected to the reaction were tested: ratio 4-NP/NaBH4, temperature and time of the reaction. Changing the ratio of 4-NP/NaBH4 in the direction of increasing NaBH4, the reaction rate increases. However, it is acceptable to reduce the reaction rate when synthesizing with high concentration of reactants. The 4-AP synthesis is performed with ratio 4-NP/NaBH4 = 1/5, suitable time and temperature for this reaction is 60 minutes and 15 oC. The catalyst sample containing 2% Pt on HKUST-1 material was used to synthesize 4-AP with the yield of 65.3% (average 64.2%), the catalyst has good stability, can reused many times. The purity of 4-AP after refining was 99 %.
HKUST-1 (MOF-199), a metal-organic framework material is synthesized from Cu(OH)2 and modified by Pt. The prepared catalysts were used to reduce 4-nitrophenol (4-NP) into 4-aminophenol (4-AP). Featured results of the catalysts by XRD, SEM, TEM, FTIR, BET, DTA/TGA... showed that metal modified process with reduced agent ethylene glycol had high efficiency, with modified yield up to 90 %. Under our experimental conditions, the catalysts based HKUST-1, containing Pt had high efficiency; conversion was greater than 93 % in reduced reaction of 4-NP. Thus, the catalyst sample contained 2% Pt was the most suitable for the reduction with conversion gained 99,4 % after 250s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.