The anterior pituitary gland provides a model for investigating the molecular basis for the appearance of phenotypically distinct cell types, within an organ, a central question in development. The rat prolactin and growth hormone genes are selectively expressed in distinct cell types (lactotrophs and somatotrophs) of the anterior pituitary gland, which reflect differential mechanisms of gene activation or restriction because of interactions of multiple factors binding to these genes. We find that the pituitary-specific 33,000 dalton transcription factor, Pit-1, normally expressed in somatotrophs, lactotrophs, and thyrotrophs, can bind to and activate both growth hormone and prolactin promoters in vitro at levels even tenfold lower than those normally present in pituitary cells. In the case of the prolactin gene, high levels of expression in transgenic animals required two cis-active regions; a distal enhancer (-1.8 to -1.5 kb) and a proximal region (-422 to +33 bp). Each of these regions alone can direct low levels of fusion gene expression to prolactin-producing cell types in transgenic mice, but a synergistic interaction between these regions is necessary for high levels of expression. The initial appearance of the prolactin transgene expression closely follows the appearance of high levels of Pit-1, but later increases in expression coincident with appearance of mature lactotrophs suggest the operation of additional, critical positive factor(s). Unexpectedly, transgenes containing the distal enhancer removed from its normal context are expressed in both the prolactin-producing lactotrophs and the TSH-producing thyrotrophs, thereby suggesting that sequences flanking this enhancer are necessary to restrict expression to the correct cell type within the pituitary. These data indicate that distinct processes of gene activation and restriction are necessary for the fidelity of cell-type specific expression within an organ. Consistent with this model, we find that lactotroph cell lines that cannot express the growth hormone gene contain high levels of functional Pit-1. We suggest a large, highly related POU-domain gene family, potentially exceeding 100 members, has been conserved and expanded in evolution to meet the increasing requirements for more intricate patterns of cell phenotypes. The POU-domain subgroup of the homeodomain gene family, in concert with other homeodomain proteins and with other classes of transcription factors, is likely to contribute to the establishment of the mammalian neuroendocrine system.
Classification Major: Biological Sciences Classification Minor: Medical Sciences or PhysiologyFemale Brain-Bone Connection Ablating ERa in kisspeptin neurons results in a massive female-specific increase in bone density leading to exceptionally strong bones. When this neuroskeletal homeostatic circuit is broken in older and "post-menopausal" female mice, bone health improves. Our work provides a platform for further mechanistic investigations that might eventually provide new opportunities to counteract age-related osteoporosis in both women and men.
Central estrogen signaling coordinates energy expenditure, reproduction, and in concert with peripheral estrogen impacts skeletal homeostasis in females. Here, we ablate estrogen receptor alpha (ERα) in the medial basal hypothalamus and find a robust bone phenotype only in female mice that results in exceptionally strong trabecular and cortical bones, whose density surpasses other reported mouse models. Stereotaxic guided deletion of ERα in the arcuate nucleus increases bone mass in intact and ovariectomized females, confirming the central role of estrogen signaling in this sex-dependent bone phenotype. Loss of ERα in kisspeptin (Kiss1)-expressing cells is sufficient to recapitulate the bone phenotype, identifying Kiss1 neurons as a critical node in this powerful neuroskeletal circuit. We propose that this newly-identified female brain-to-bone pathway exists as a homeostatic regulator diverting calcium and energy stores from bone building when energetic demands are high. Our work reveals a previously unknown target for treatment of age-related bone disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.