This paper reports a comprehensive study of Si-based GeSn mid-infrared photodetectors, which includes: i) the demonstration of a set of photoconductors with Sn compositions ranging from 10.5% to 22.3%, showing the cut-off wavelength has been extended to 3.65 µm . The measured maximum D* of 1.1×10 10 cm⋅Hz 1/2 ⋅W -1 is comparable to that of commercial extended-InGaAs detectors; ii) the development of surface passivation technique on photodiode based on in-depth analysis of dark current mechanism, effectively reducing the dark current. Moreover, mid-infrared images were obtained using GeSn photodetectors, showing the comparable image quality with that acquired by using commercial PbSe detectors.
Lasing from direct bandgap group-IV GeSn alloys has opened a new venue for the development of Sibased monolithic laser. In this work, we demonstrate optically pumped GeSn lasers based on both ridge and planar waveguide structures. The near room temperature operation at 270 K was achieved with optically pumped edge-emitting devices. Moreover, due to the reduced side-wall surface recombination and improved thermal management, the 100 μm wide ridge waveguide laser features a lower lasing threshold compared to other devices. The advance reported in this work, enabled by the material growth via an industry standard chemical vapor deposition reactor and low-cost commercially available precursors, is a major step forward toward Si-based mid-infrared sources for photonics integration.
GeSn lasers enable monolithic integration of lasers on the Si platform using all-group-IV directbandgap materials. Although optically pumped GeSn lasers have made significant progress, the study of the electrically injected lasers has just begun only recently. In this work, we present explorative investigations of electrically injected GeSn heterostructure lasers with various layer thicknesses and material compositions. The cap layer total thickness was varied between 240 and 100 nm. At 10 K, a 240-nm-SiGeSn capped device had a threshold current density Jth = 0.6 kA/cm 2 compared to Jth = 1.4 kA/cm 2 of a device with 100-nm-SiGeSn cap due to an improved modal overlap with the GeSn gain region. Both devices had a maximum operating temperature Tmax = 100 K. Device with cap layers of Si0.03Ge0.89Sn0.08 and Ge0.95Sn0.05, respectively, were also compared. Due to less effective carrier (electron) confinement, the device with a 240-nm-GeSn cap had a higher threshold Jth = 2.4 kA/cm 2 and lower maximum operating temperature Tmax = 90 K, compared to those of the 240-nm-SiGeSn capped device with Jth = 0.6 kA/cm 2 and Tmax = 100 K. In the study of the active region material, the device with Ge0.85Sn0.15 active region had a 2.3 higher Jth and 10 K lower Tmax, compared to the device with Ge0.89Sn0.11 in its active region. This is likely due to higher defect density in Ge0.85Sn0.15 rather than an intrinsic issue. The longest lasing wavelength was measured as 2682 nm at 90 K. The investigations provide guidance to the future structure design of GeSn laser diodes to further improve the performance.
Normal-incidence GeSn photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/GeSn/Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 cmHzW at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.
Thin-film Ge0.9Sn0.1 structures were grown by reduced-pressure chemical vapor deposition and were fabricated into photoconductors on Si substrates using a CMOS-compatible process. The temperature-dependent responsivity and specific detectivity (D*) were measured from 300 K down to 77 K. The peak responsivity of 1.63 A/W measured at 1.55 μm and 77 K indicates an enhanced responsivity due to photoconductive gain. The measured spectral response of these devices extends to 2.4 μm at 300 K, and to 2.2 μm at 77 K. From analysis of the carrier drift and photoconductive gain measurements, we have estimated the carrier lifetime of this Ge0.9Sn0.1 thin film. The longest measured effective carrier lifetime of 1.0 × 10−6 s was observed at 77 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.