Background Environmental DNA and metabarcoding allow the identification of a mixture of species and launch a new era in bio- and eco-assessment. Many steps are required to obtain taxonomically assigned matrices from raw data. For most of these, a plethora of tools are available; each tool's execution parameters need to be tailored to reflect each experiment's idiosyncrasy. Adding to this complexity, the computation capacity of high-performance computing systems is frequently required for such analyses. To address the difficulties, bioinformatic pipelines need to combine state-of-the art technologies and algorithms with an easy to get-set-use framework, allowing researchers to tune each study. Software containerization technologies ease the sharing and running of software packages across operating systems; thus, they strongly facilitate pipeline development and usage. Likewise programming languages specialized for big data pipelines incorporate features like roll-back checkpoints and on-demand partial pipeline execution. Findings PEMA is a containerized assembly of key metabarcoding analysis tools that requires low effort in setting up, running, and customizing to researchers’ needs. Based on third-party tools, PEMA performs read pre-processing, (molecular) operational taxonomic unit clustering, amplicon sequence variant inference, and taxonomy assignment for 16S and 18S ribosomal RNA, as well as ITS and COI marker gene data. Owing to its simplified parameterization and checkpoint support, PEMA allows users to explore alternative algorithms for specific steps of the pipeline without the need of a complete re-execution. PEMA was evaluated against both mock communities and previously published datasets and achieved results of comparable quality. Conclusions A high-performance computing–based approach was used to develop PEMA; however, it can be used in personal computers as well. PEMA's time-efficient performance and good results will allow it to be used for accurate environmental DNA metabarcoding analysis, thus enhancing the applicability of next-generation biodiversity assessment studies.
Background: Environmental DNA (eDNA) and metabarcoding, allow the identification of a mixture of individuals and launch a new era in bio-and eco-assessment. A number of steps are required to obtain taxonomically assigned (Molecular) Operational Taxonomic Unit ((M)OTU) tables from raw data. For most of these, a plethora of tools is available; each tool's execution parameters need to be tailored to reflect each experiment's idiosyncrasy. Adding to this complexity, for such analyses, the computation capacity of High Performance Computing (HPC) systems is frequently required.3 Software containerization technologies ease the sharing and running of software packages across operating systems; thus, they strongly facilitate pipeline development and usage. Likewise are programming languages specialized for big data pipelines, incorporating features like roll-back checkpoints and on-demand partial pipeline execution.Findings: PEMA is a containerized assembly of key metabarcoding analysis tools with a low effort in setting up, running and customizing to researchers' needs. Based on third party tools, PEMA performs reads' pre-processing, clustering to (M)OTUs and taxonomy assignment for 16S rRNA and COI marker gene data. Due to its simplified parameterisation and checkpoint support, PEMA allows users to explore alternative algorithms for specific steps of the pipeline without the need of a complete re-execution.PEMA was evaluated against previously published datasets and achieved comparable quality results. Conclusions:Given its time-efficient performance and its quality results, it is suggested that PEMA can be used for accurate eDNA metabarcoding analysis, thus enhancing the applicability of next-generation biodiversity assessment studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.