BackgroundAlthough programmed cell death-1/programmed death-ligand 1 (PD-L1) inhibitors show remarkable antitumor activity, a large portion of patients with cancer, even those with high PD-L1-expressing tumors, do not respond to their effects. Most PD-L1 inhibitors contain modified fragment crystallizable region (Fc) receptor binding sites to prevent antibody-dependent cellular cytotoxicity (ADCC) against PD-L1-expressing non-tumor cells. However, natural killer (NK) cells have specific antitumor activity in the presence of tumor-targeting antibody through ADCC, which could enhance NK cell-induced cytotoxicity. We evaluated the antitumor efficacy of ADCC via anti-PD-L1 monoclonal antibodies (mAbs) and NK cells against several PD-L1-positive cancer cell lines.MethodsVarious cancer cell lines were used as target cell lines. Surface PD-L1 expression was analyzed by flow cytometry. IMC-001 and anti-hPD-L1-hIgG1 were tested as anti-PD-L1 mAbs with ADCC and atezolizumab as an anti-PD-L1 mAb without ADCC. NK cell cytotoxicity was measured by 51Cr-release assay and CD107a degranulation assay. Also, live cell imaging was performed to evaluate cytotoxicity in a single-cell level. NK-92-CD16 (CD16-transduced NK-92 cell line) and peripheral blood mononuclear cells from healthy donors, respectively, were used as an effector cell. FcγRIIIa (CD16a)-V158F genotyping was performed for healthy donors.ResultsWe demonstrated that the cytotoxicity of NK-92-CD16 cells toward PD-L1-positive cancer cell lines was significantly enhanced in the presence of anti-PD-L1 mAb with ADCC. We also noted a significant increase in primary human NK cell cytotoxicity against PD-L1-positive human cancer cells when cocultured with anti-PD-L1 mAb with ADCC. Moreover, NK cells expressing a FCGR3A high-affinity genotype displayed higher anti-PD-L1 mAb-mediated ADCC lysis of tumor cells than donors with a low-affinity genotype.ConclusionThese results suggest that NK cells induce an ADCC response in combination with anti-PD-L1 mAbs, which helps promote ADCC antitumor activity against PD-L1-positive tumors. This study provides support for NK cell immunotherapy against high PD-L1-expressing tumors in combination with ADCC through anti-PD-L1 mAbs.
Immune checkpoint inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) are mainstream treatments for renal cell carcinoma (RCC). Both T cells and macrophages infiltrate the tumor microenvironment of RCC. CD47, an immune checkpoint of macrophages, transmits the “don’t eat me” signal to macrophages. We propose a novel therapeutic strategy that activates the antitumor effect of macrophages. We found that CD47 was expressed in patients with RCC, and high CD47 expression was indicative of worse overall survival in datasets from The Cancer Genome Atlas. We observed that CD47-blocking antibodies enhanced the antitumor effect of macrophages against human RCC cell lines. Trogocytosis, rather than phagocytosis, occurred and was promoted by increased cell-to-cell contact between macrophages and RCC cells. Trogocytosis induced by CD47 blockade occurred in the presence of CD11b integrin signaling in macrophages and was augmented when RCC cells were exposed to VEGFR TKIs, except for sunitinib. In conclusion, this study presents evidence that anti-CD47 blocking antibodies improve the antitumor effect of macrophages in RCC. In combination with VEGFR TKIs, CD47 blockade is a potential therapeutic strategy for patients with RCC.
PurposeNKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the e cacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. MethodsSix HNSCC cell lines were used as target cells. After exposure to IFN-γ, HLA-E surface expression on HNSCC cell lines was measured by ow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51 Cr release assays. ResultsWe con rmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and e cacy of monalizumab was high. Combination with cetuximb increased the e cacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the e cacy of monalizumab, even in the HLA-E low groups. ConclusionMonalizumab e cacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab e cacy could be improved by promoting NK cell activity.
Purpose NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. Methods Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. Results We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximb increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. Conclusion Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.