Catecholamines function via G protein-coupled receptors, triggering an increase in intracellular levels of 3′,5′-cyclic adenosine monophosphate (cAMP) in various cells. Catecholamine biosynthesis and the β-adrenergic receptor exist in melanocytes; thus, catecholamines may play critical roles in skin pigmentation. However, their action and mechanisms mediating melanogenesis in human skin have not yet been investigated. Therefore, we examined the potential anti-melanogenetic effect of carvedilol, a nonselective β-blocker with weak α1-blocking activities. Carvedilol reduced melanin content and cellular tyrosinase activity without compromising cellular viability in normal human melanocytes as well as in mel-Ab immortalized mouse melanocytes. Carvedilol downregulated microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Carvedilol treatment led to the downregulation of phosphor-cAMP response element-binding protein (CREB). Moreover, the increase in cAMP levels upon treatment with forskolin reversed the anti-melanogenic action of carvedilol. In addition, carvedilol remarkably reduced the melanin index in ultraviolet-irradiated human skin cultures. Taken together, our results indicate that carvedilol effectively suppresses melanogenesis in human melanocytes and ex vivo human skin by inhibiting cAMP/protein kinase A/CREB signaling. The anti-melanogenic effects of carvedilol have potential significance for skin whitening agents.
Background: Although CREB phosphorylation is known to be essential in UVB/cAMP-stimulated melanogenesis, CREB null mice did not show identifiable pigmentation phenotypes. Here, we show that CREB-regulated transcription co-activator 3 (CRTC3) quantitatively regulates and orchestrates melanogenesis by directly targeting microphthalmia-associated transcription factor (MITF) and regulating the expression of most key melanogenesis-related genes. Methods: We analyzed CRTC3-null, KRT14-SCF transgenic, and their crossover mice. The molecular basis of CRTC3 effects on pigmentation was investigated by histology, melanin/tyrosinase assay, immunoblotting, shRNA, promoter assay, qRT-PCR, and subcellular localization. These analyses were carried out in primary cultured melanocytes, mouse cell lines, normal human cells, co-cultures, and ex vivo human skin. CRTC/CREB activity screening was performed to identify candidate agents for the regulation of melanogenesis. Results: The coat and skin color of CRTC3-null mice was paler due to a reduction in melanin deposition. Melanogenesis-related genes were reduced in CRTC3-deficient cultured melanocytes and tail skin of CRTC3-null mice. Notably, basal levels of MITF present in CRTC3-null mice were sufficient for melanocytic differentiation/survival. Thus CRTC3-null mice showed a comparable number of epidermal melanocytes compared to control mice. Stem cell factor (SCF) introduction by crossing with KRT14-SCF mice increased epidermal melanocytes and melanin deposition in control and CRTC3-null mice, but the skin color remained still light on the CRTC3-null background. Furthermore, we identified the therapeutic potential of altiratinib to inhibit melanogenesis in human melanocytes and human skin effectively and safely. Conclusion: CRTC3 appears to be a key sensor for melanogenesis and can be used as a reversible and tunable tool for selectively regulating melanogenesis without affecting melanocyte integrity. Thus, CRTC3 can also serve as a screening tool for the discovery of ideal melanogenesis-modulating small molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.