International audienceGrouped Frequent Sequential patterns can be extracted in an unsupervised way from Image Time Series (ITS). Plotting the occurrence maps of these patterns allows to describe the dataset spatially and temporally while discarding random uncertainties. However these maps can be too numerous and a swap randomization ranking approach has been proposed recently to select the most promising patterns. This previous work experimented the technique on Satellite ITS, giving credit to the maps that are least likely to appear on a randomized ITS. In this paper, extraction and ranking of GFS patterns is performed on a motion field time series obtained by terrestrial photogrammetry over the Argentière glacier. The focus is extended to the maps that are most likely to occur on the randomized time series and the experiment is repeated thousand times to assess the stability of the ranking
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.