This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.
Background Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. Methods MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BMderived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. Results MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m 2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m 2 ) (P < 0.01). Conclusions Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.
BackgroundMitochondria are involved in cancer energy metabolism, although the mechanisms underlying the involvement of mitoribosomal dysfunction in hepatocellular carcinoma (HCC) remain poorly understood. Here, we investigated the effects of mitoribosomal impairment-mediated alterations on the immunometabolic characteristics of liver cancer.MethodsWe used a mouse model of HCC, liver tissues from patients with HCC, and datasets from The Cancer Genome Atlas (TCGA) to elucidate the relationship between mitoribosomal proteins (MRPs) and HCC. In a mouse model, we selectively disrupted expression of the mitochondrial ribosomal protein CR6-interacting factor 1 (CRIF1) in hepatocytes to determine the impact of hepatocyte-specific impairment of mitoribosomal function on liver cancer progression. The metabolism and immunophenotype of liver cancer was assessed by glucose flux assays and flow cytometry, respectively.ResultsSingle-cell RNA-seq analysis of tumor tissue and TCGA HCC transcriptome analysis identified mitochondrial defects associated with high-MRP expression and poor survival outcomes. In the mouse model, hepatocyte-specific disruption of the mitochondrial ribosomal protein CRIF1 revealed the impact of mitoribosomal dysfunction on liver cancer progression. Crif1 deficiency promoted programmed cell death protein 1 expression by immune cells in the hepatic tumor microenvironment. A [U-13C6]-glucose tracer demonstrated enhanced glucose entry into the tricarboxylic acid cycle and lactate production in mice with mitoribosomal defects during cancer progression. Mice with hepatic mitoribosomal defects also exhibited enhanced progression of liver cancer accompanied by highly exhausted tumor-infiltrating T cells. Crif1 deficiency induced an environment unfavorable to T cells, leading to exhaustion of T cells via elevation of reactive oxygen species and lactate production.ConclusionsHepatic mitoribosomal defects promote glucose partitioning toward glycolytic flux and lactate synthesis, leading to T cell exhaustion and cancer progression. Overall, the results suggest a distinct role for mitoribosomes in regulating the immunometabolic microenvironment during HCC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.