Background Balance impairments are common in patients with infratentorial stroke. Although robot-assisted gait training (RAGT) exerts positive effects on balance among patients with stroke, it remains unclear whether such training is superior to conventional physical therapy (CPT). Therefore, we aimed to investigate the effects of RAGT combined with CPT and compared them with the effects of CPT only on balance and lower extremity function among survivors of infratentorial stroke. Methods This study was a single-blinded, randomized controlled trial with a crossover design conducted at a single rehabilitation hospital. Patients ( n = 19; 16 men, three women; mean age: 47.4 ± 11.6 years) with infratentorial stroke were randomly allocated to either group A (4 weeks of RAGT+CPT, followed by 4 weeks of CPT+CPT) or group B (4 weeks of CPT+CPT followed by 4 weeks of RAGT+CPT). Changes in dynamic and static balance as indicated by Berg Balance Scale scores were regarded as the primary outcome measure. Outcome measures were evaluated for each participant at baseline and after each 4-week intervention period. Results No significant differences in outcome-related variables were observed between group A and B at baseline. In addition, no significant time-by-group interactions were observed for any variables, indicating that intervention order had no effect on lower extremity function or balance. Significantly greater improvements in secondary functional outcomes such as lower extremity Fugl-Meyer assessment (FMA-LE) and scale for the assessment and rating of ataxia (SARA) were observed following the RAGT+CPT intervention than following the CPT+CPT intervention. Conclusion RAGT produces clinically significant improvements in balance and lower extremity function in individuals with infratentorial stroke. Thus, RAGT may be useful for patients with balance impairments secondary to other pathologies. Trial registration ClinicalTrials.gov Identifier NCT02680691 . Registered 09 February 2016; retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12984-019-0553-5) contains supplementary material, which is available to authorized users.
Detecting neuroplastic changes during locomotor neurorehabilitation is crucial for independent primal motor behaviours. However, long-term locomotor training-related neuroplasticity remains unexplored. We compared the effects of end-effector robot-assisted gait training (E-RAGT) and bodyweight-supported treadmill training (BWST) on cortical activation in individuals with hemiparetic stroke. Twenty-three men and five women aged 53.2 ± 11.2 years were recruited and randomly assigned to participate in E-RAGT (n = 14) or BWST (n = 14) for 30 min/day, 5 days/week, for 4 weeks. Cortical activity, lower limb motor function, and gait speed were evaluated before and after training. Activation of the primary sensorimotor cortex, supplementary motor area, and premotor cortex in the affected hemisphere significantly increased only in the E-RAGT group, although there were no significant between-group differences. Clinical outcomes, including the Fugl-Meyer assessment (FMA), timed up and go test, and 10-m walk test scores, improved after training in both groups, with significantly better FMA scores in the E-RAGT group than in the BWST group. These findings suggest that E-RAGT effectively improves neuroplastic outcomes in hemiparetic stroke, although its superiority over conventional training remains unclear. This may have clinical implications and provides insight for clinicians interested in locomotor neurorehabilitation after hemiparetic stroke. Trial Registration: ClinicalTrials.gov Identifier NCT04054739 (12/08/2019).
Background Robotic rehabilitation of stroke survivors with upper extremity dysfunction may yield different outcomes depending on the robot type. Considering that excessive dependence on assistive force by robotic actuators may interfere with the patient’s active learning and participation, we hypothesised that the use of an active-assistive robot with robotic actuators does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of a passive robot without robotic actuators. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active-assistive and passive robotic rehabilitation among stroke survivors. Methods In this single-blinded randomised controlled pilot trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active-assistive robotic intervention (ACT) and passive robotic intervention (PSV) groups in a 1:1 ratio and administered 20 sessions of 30-min robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robots through interviews with patients, therapists, and physiatrists. Results In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p < 0.05). The PSV group showed better improvement in participation and smoothness than the ACT group. In contrast, the ACT group exhibited better improvement in mean speed. Conclusions There were no differences between the two groups regarding the impairment and activity domains. However, the PSV robots were more beneficial than ACT robots regarding participation and smoothness. Considering the high cost and complexity of ACT robots, PSV robots might be more suitable for rehabilitation in stroke survivors capable of voluntary movement. Trial registration The trial was registered retrospectively on 14 March 2018 at ClinicalTrials.gov (NCT03465267).
Highlights• End-effector type robot-assisted gait training systems were found to be more effective in locomotor recovery in stroke patients when they were applied in conjunction with conventional gait training rather than conventional gait training alone. However, this study does not confirm that the exoskeleton type robot-assisted gait training was more effective when it was applied in conjunction with the conventional gait training rather than the conventional gait training alone.• The robot-assisted gait training paradigm offers intensive, repetitive, accurate kinematic feedback and symmetrical gait practice while reducing the workload for the therapist, reducing the cost of stroke rehabilitation. ABSTRACTWhile a variety of robot-assisted gait training systems have been widely applied for locomotor rehabilitation in stroke patients, the best supporting evidence for robot-assisted gait training systems remains unknown. The purpose of this study was to provide the best robot-assisted gait training and clinical evidence by comparing the effects of exoskeleton and end-effector type robot-assisted gait training in stroke rehabilitation. The present study underwent a review of the literature to determine the best clinical evidence of the most commonly utilized robot-assisted gait training paradigms (end-effector and exoskeleton types) in stroke gait rehabilitation. The review corroborates the compelling evidence that combined robotassisted gait training was advantageous in stroke rehabilitation, as it offers additive special therapeutic effects that were not afforded by conventional therapy alone. Most importantly, the robot-assisted gait training paradigm provided more intensive, repetitive, accurate kinematic feedback and symmetrical gait practice, while reducing therapist labor, which is often not affordable in current stroke rehabilitation care. Both the robot-assisted gait training with either the end-effector type or exoskeleton type was beneficial for improving motor recovery, gait function, and balance in stroke patients when it was combined with the conventional physical therapy. The robot-assisted gait training should be used as an augmented gait intervention for stroke population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.