Background: Chronic exposure to glucocorticoids is associated with resistance to nondepolarising neuromuscular blocking agents. Therefore, we hypothesised that sugammadex-induced recovery in subjects with chronic exposure to dexamethasone was faster than that in subjects without dexamethasone exposure. Objective: To evaluate the recovery profile of rocuronium-induced neuromuscular blockade after sugammadex administration in rats. Design: An in vivo study on rats.Setting: Asan Institute for Life Sciences, Asan Medical Center, Korea, from April 2017 to October 2017.Animals: Thirty-six male Sprague-Dawley rats.Intervention: Sprague–Dawley rats were allocated to three groups (dexamethasone group, control group, and pair-fed group) for the in vivo study. Dexamethasone group received daily intraperitoneal injections of dexamethasone 500 μg kg-1 or 0.9% saline for 15 days. On the sixteenth day, 3.5 mg kg-1 of rocuronium was administered to achieve complete neuromuscular blockade. Main outcome measures: The recovery time to a train-of-four ratio Results: There were no significant differences in the recovery time to train-of-four ratio to 0.9 among the groups (P = 0.531). The time to second twitch of train-of-four recovery that indicated the duration of rocuronium-induced neuromuscular blockade was significantly shorter in Group D than in Groups C and P (P = 0.001). Conclusion: As previously reported, resistance to rocuronium was observed in rats with chronic exposure to dexamethasone. However, the neuromuscular recovery time after sugammadex administration was not significantly different between groups.
Background: Chronic exposure to glucocorticoids is associated with resistance to nondepolarising neuromuscular blocking agents. Therefore, we hypothesised that sugammadex-induced recovery in subjects with chronic exposure to dexamethasone was faster than that in subjects without dexamethasone exposure.Objective: To evaluate the recovery pro le of rocuronium-induced neuromuscular blockade after sugammadex administration in rats.Design: An in vivo study on rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.