The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal–organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g–1, or 213 cm3 cm–3) but much less CO2 uptake (90 cm3 g–1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g–1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δq break = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host–guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.
The defect concentration in the prototypical metal–organic framework UiO-66 can be well controlled during synthesis, leading to precisely tunable physicochemical properties for this structure. However, there has been a long-standing debate regarding the nature of the compensating species present at the defective sites. Here, we present unambiguous spectroscopic evidence that the missing-linker defect sites in an ambient environment are compensated with both carboxylate and water (bound through intermolecular hydrogen bonding), which is further supported by ab initio calculations. In contrast to the prevailing assumption that the monocarboxylate groups (COO–) of the modulators form bidentate bonding with two Zr4+ sites, COO– is found to coordinate to an open Zr4+ site in an unidentate mode. The neighboring Zr4+ site is terminated by a coordinating H2O molecule, which helps to stabilize the COO– group. This finding not only provides a new understanding of defect termination in UiO-66, but also sheds light on the origin of its catalytic activity.
We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a non-planar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and-2, respectively, for their surface areas, pore sizes and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy (VT-IR) methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.
Fabrication and operation of simple solid state electrochromic devices using ethyl viologen diperchlorate in a polymer matrix is presented here. In-situ Raman and transmission/absorption studies have been done to establish the origin of bias induced color change, between a transparent and navy blue color, in the electrochromic device. The origin of bias induced color change has been attributed to the bias induced redox switching between its viologen dication and free redicle forms. Fundamental reason behind colour changes of viologen molecule has been established. In-situ UV-Vis spectra reveals that the navy blue color of the device under biased condition is not due to increase in the transparency corresponding to blue wavelength but due to suppression of the transparency corresponding to the complementary colors. Absorption modulation has been reported from the device with good ON/OFF contrast of the device.
Porosification of silicon (Si) by metal induced etching (MIE) process have been studies here to understand the etching mechanism. The etching mechanism has been discussed on the basis of electron transfer from Si to metal ion (Ag + ) and metal to H 2 O 2 . Role of silver nanoparticles (AgNPs) in the etching process has been investigated by studying the effect of AgNPs coverage on surface porosity. A quantitative analysis of SEM images, done using Image J, shows a direct correlation between AgNPs coverage and surface porosity after the porosification. Density of Si nanowires (NWs) also varies as a function of AgNPs fractional coverage which reasserts the fact that AgNPs governs the porosification process during MIE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.