Since being first detected in China, coronavirus disease 2019 (COVID-19) has spread rapidly across the world, triggering a global pandemic with no viable cure in sight. As a result, national responses have focused on the effective minimization of the spread. Border control measures and travel restrictions have been implemented in a number of countries to limit the import and export of the virus. The detection of COVID-19 is a key task for physicians. The erroneous results of early laboratory tests and their delays led researchers to focus on different options. Information obtained from computed tomography (CT) and radiological images is important for clinical diagnosis. Therefore, it is worth developing a rapid method of detection of viral diseases through the analysis of radiographic images. We propose a novel method of detection of COVID-19. The purpose is to provide clinical decision support to healthcare workers and researchers. The article is to support researchers working on early detection of COVID-19 as well as similar viral diseases.
The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between − 10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20 % for Resnet50, 98.10 % for InceptionV3, and 98.30 % for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.
Object detection plays a vital role in the fields of computer vision, machine learning, and artificial intelligence applications (such as FUSE-AI (E-healthcare MRI scan), face detection, people counting, and vehicle detection) to identify good and defective food products. In the field of artificial intelligence, target detection has been at its peak, but when it comes to detecting multiple targets in a single image or video file, there are indeed challenges. This article focuses on the improved K-nearest neighbor (MK-NN) algorithm for electronic medical care to realize intelligent medical services and applications. We introduced modifications to improve the efficiency of MK-NN, and a comparative analysis was performed to determine the best fuse target detection algorithm based on robustness, accuracy, and computational time. The comparative analysis is performed using four algorithms, namely, MK-NN, traditional K-NN, convolutional neural network, and backpropagation. Experimental results show that the improved K-NN algorithm is the best model in terms of robustness, accuracy, and computational time.
Information hiding aims to embed a crucial amount of confidential data records into the multimedia, such as text, audio, static and dynamic image, and video. Image-based information hiding has been a significantly important topic for digital forensics. Here, active image deep steganographic approaches have come forward for hiding data. The least significant bit (LSB) steganography approach is proposed to conceal a secret message into the original image. First, the lightweight stream encryption cryptography encrypts secret information in the cover image to protect embedded information from source to destination. Whereas the encrypted embedded cover information into the carrier of stego-image with the help of the LSB and then transmit. In the proposed investigational scheme, a convolutional neural net is used. A model is trained to detect and extract patterns of image hidden features, encrypted stego-image optimization, and classify original and cover images of steganography. Through the experiment result on the forensic image database for mobile steganography of the Center for Statistics and Application in Forensic Evidence, the overall embedded and extracting that the proposed scheme can achieve information hiding as well as revealing with an accuracy rate of 95.1%. The experimental result shows the robustness of the model in terms of efficiency as compared to other state-of-the-art schemes.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
In the transmission of medical images, if the image is not processed, it is very likely to leak data and personal privacy, resulting in unpredictable consequences. Traditional encryption algorithms have limited ability to deal with complex data. The chaotic system is characterized by randomness and ergodicity, which has advantages over traditional encryption algorithms in image encryption processing. A novel V-net convolutional neural network (CNN) based on four-dimensional hyperchaotic system for medical image encryption is presented in this study. Firstly, the plaintext medical images are processed into 4D hyperchaotic sequence images, including image segmentation, chaotic system processing, and pseudorandom sequence generation. Then, V-net CNN is used to train chaotic sequences to eliminate the periodicity of chaotic sequences. Finally, the chaotic sequence image is diffused to change the raw image pixel to realize the encryption processing. Simulation test analysis demonstrates that the proposed algorithm has better effect, robustness, and plaintext sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.