Identification of anomaly and malicious traffic in the Internet of things (IoT) network is essential for the IoT security to keep eyes and block unwanted traffic flows in the IoT network. For this purpose, numerous machine learning (ML) technique models are presented by many researchers to block malicious traffic flows in the IoT network. However, due to the inappropriate feature selection, several ML models prone misclassify mostly malicious traffic flows. Nevertheless, the significant problem still needs to be studied more in-depth that is how to select effective features for accurate malicious traffic detection in IoT network. To address the problem, a new framework model is proposed. Firstly, a novel feature selection metric approach named CorrAUC proposed, and then based on CorrAUC, a new feature selection algorithm name Corrauc is develop and design, which is based on wrapper technique to filter the features accurately and select effective features for the selected ML algorithm by using AUC metric. Then, we applied integrated TOPSIS and Shannon Entropy based on a bijective soft set to validate selected features for malicious traffic identification in the IoT network. We evaluate our proposed approach by using the Bot-IoT dataset and four different ML algorithms. Experimental results analysis showed that our proposed method is efficient and can achieve >96% results on average.
Deep Residual Networks have recently been shown to significantly improve the performance of neural networks trained on ImageNet, with results beating all previous methods on this dataset by large margins in the image classification task. However, the meaning of these impressive numbers and their implications for future research are not fully understood yet. In this survey, we will try to explain what Deep Residual Networks are, how they achieve their excellent results, and why their successful implementation in practice represents a significant advance over existing techniques. We also discuss some open questions related to residual learning as well as possible applications of Deep Residual Networks beyond ImageNet. Finally, we discuss some issues that still need to be resolved before deep residual learning can be applied on more complex problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.