Deep Residual Networks have recently been shown to significantly improve the performance of neural networks trained on ImageNet, with results beating all previous methods on this dataset by large margins in the image classification task. However, the meaning of these impressive numbers and their implications for future research are not fully understood yet. In this survey, we will try to explain what Deep Residual Networks are, how they achieve their excellent results, and why their successful implementation in practice represents a significant advance over existing techniques. We also discuss some open questions related to residual learning as well as possible applications of Deep Residual Networks beyond ImageNet. Finally, we discuss some issues that still need to be resolved before deep residual learning can be applied on more complex problems.
Different from ship detection from synthetic aperture radar (SDSAR) and ship detection from spaceborne optical images (SDSOI), ship detection from visual image (SDVI) has better detection accuracy and real-time performance, which can be widely used in port management, cross-border ship detection, autonomous ship, safe navigation, and other real-time applications. In this paper, we proposed a new SDVI algorithm, named enhanced YOLO v3 tiny network for real-time ship detection. The algorithm can be used in video surveillance to realize the accurate classification and positioning of six types of ships (including ore carrier, bulk cargo carrier, general cargo ship, container ship, fishing boat, and passenger ship) in real-time. Based on the original YOLO v3 tiny network, we have made the following fine tunings. 1) The preset anchors trained on Seaship annotation data have the similar "dumpy" shape as the normal ships, helping the network to achieve faster and better training; 2) Convolution layer instead of max-pooling layer and expanding the channels of prediction network improve the small target detection ability of the algorithm. 3) Due to the problem that large-scale ships are easily disturbed by the onshore building, complex waves and light on the water surface, we introduced attention module named CBAM into the backbone network, which make the model more focused on the target. The detection accuracy of the proposed algorism is obviously better than that of the original YOLO v3 tiny work. Although it is slightly inferior to the Yolo v3 network, it has faster speed than Yolo v3. However, the proposed algorithm is a better trade-off between real-time performance and detection accuracy, and is more suitable for actual scenes. Compared with the SOAT algorithm in [26], our algorithm has a 9.6% improvement in mAP and a faster speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.