Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Precision medicine has greatly aided in improving health outcomes using earlier diagnosis and better prognosis for chronic diseases. It makes use of clinical data associated with the patient as well as their multi-omics/genomic data to reach a conclusion regarding how a physician should proceed with a specific treatment. Compared to the symptom-driven approach in medicine, precision medicine considers the critical fact that all patients do not react to the same treatment or medication in the same way. When considering the intersection of traditionally distinct arenas of medicine, that is, artificial intelligence, healthcare, clinical genomics, and pharmacogenomics—what ties them together is their impact on the development of precision medicine as a field and how they each contribute to patient-specific, rather than symptom-specific patient outcomes. This study discusses the impact and integration of these different fields in the scope of precision medicine and how they can be used in preventing and predicting acute or chronic diseases. Additionally, this study also discusses the advantages as well as the current challenges associated with artificial intelligence, healthcare, clinical genomics, and pharmacogenomics.
Background Cardiovascular disease (CVD) is a leading cause of premature mortality in the United States and the world. CVD comprises several complex and mostly heritable conditions, which range from myocardial infarction to congenital heart disease. The risk factors contributing to the development of CVD and response to therapy in an individual patient are highly variable. Here, we report our findings from an integrative analysis of gene expression, disease‐causing gene variants and associated phenotypes among CVD populations, with a focus on high‐risk heart failure (HF) patients. Methods We built a cohort using electronic health records of consented patients with available samples and then performed high‐throughput whole genome and RNA sequencing of key genes responsible for HF and other CVD pathologies. Our in‐depth gene expression analysis revealed differentially expressed genes associated with HF and other CVDs. We performed a variant analysis of whole genome sequence data of CVD patients and identified genes with altered gene expression with functional and non‐functional mutations in these genes. Results Our results highlight the importance of investigating the mechanisms of CVD progression through multi‐omics datasets. Next, we performed splice mutation and variant distribution analysis of genes associated with HF and other CVD. We implemented Jensen–Shannon divergence (JSD)‐based method and identified HBA1, FADD, ADRB2, NPPB, ADRB1, ADB and NPPC genes with the greatest variance based on their JSD scores. Our study provided evidence that applying integrative data analysis approach involving genomics and transcriptomics data will not only help understand the pathophysiology of CVD diseases but also reduce heterogeneity in disease subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.