High education is an important and critical part of education all over the world. In last year, the world has been turned increasingly to online education due to the outbreak of the Covid-19 pandemic; therefore, improving this education system became an urgent matter. Online learning systems are a primal environment for acquiring educational data which can be from different sources, especially academic institutions. These data can be mainly used to analyze and extract utilizable information to help in understanding university students’ performance and identifying factors that affect it. To extract some meaningful information from these large volumes of data, academic organizations must mine the data with high accuracy. In this work, three different real datasets were selected, pre-processed, cleaned, and filtered for applying support vector machine (SVM) with multilayer perceptron kernel (MLP kernel) and optimize its parameters using simulated annealing (SA) algorithm to improve the objective function value. While examining the search space, SA has the advantage of escaping from local minima since it offers the chance for accepting the worse neighbor as a solution in a controlled manner. The results show that the designed system can determine the best SVM parameters using SA and therefore presents better model evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.