Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of -cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-15 N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not ␣-ketoisocaproate, failed to stimulate insulin release. -Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates -cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and P i and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.In addition to glucose, amino acids and other metabolic fuels are important stimulants of insulin secretion from pancreatic -cells. Leucine, which has been studied intensively, may stimulate insulin release through two different mechanisms. The first involves transamination of leucine to ␣-ketoisocaproate (KIC) 1 and subsequent mitochondrial oxidation. The second promotes insulin release via allosteric activation of glutamate dehydrogenase (GDH) causing oxidation of glutamate to the Krebs cycle intermediate, ␣-ketoglutarate, plus ammonia. The importance of the latter mechanism has been highlighted recently by the discovery of a dominant form of congenital hyperinsulinism associated with mutations of GDH leading to a gain of enzyme activity, because sensitivity to inhibition by GTP and ATP is impaired (1-3). Affected children have increased -cell responsiveness to leucine and are susceptible to acute hypoglycemia following a high protein meal (4). The involvement of GDH may explain the observation that, in contrast to other amino acids, leucine-stimulated insulin secretion (LSIS) is suppressed by high glucose. For example, Gao et al. (5) reported that glucose inhibits leucine stimulation of glutaminolysis and insulin secretion in isolated mouse islets, presumably by increasing intracellular ATP and GTP while decreasing ADP and thus inhibiting GDH activity.GDH has also been proposed by Maechler and Wollheim (6) to play an essential role in glucose-mediated insulin secretion by acting in the reverse direction to catalyze production of glutamate, which is hypothesized to work as a cofactor in the process leading to exocytosis of insulin granules. T...
Insulin secretion by pancreatic -cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED 50 values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the -cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH.
Leucine or the nonmetabolized leucine analog +/- 2-amino-2-norbornane-carboxylic acid (BCH) (both at 10 mmol/l) induced biphasic insulin secretion in the presence of 2 mmol/l glutamine (Q2) in cultured mouse islets pretreated for 40 min without glucose but with Q2 present. The beta-cell response consisted of an initial peak of 20- to 25-fold above basal and a less marked secondary phase. However, BCH produced only a delayed response, while leucine was totally ineffective when islets were pretreated with 25 mmol/l glucose plus Q2. With Q2, 10 mmol/l BCH or leucine caused a nearly threefold increase, a twofold increase, or had no effect on cytosolic Ca2+ levels in islets pretreated for 40 min with 0, 5, or 15 mmol/l glucose, respectively. Thus, pretreatment of islets with high glucose inhibited BCH- and leucine-induced cytosolic Ca2+ changes and insulin release. Glucose decreased glutamine oxidation in cultured rat islets when BCH was present at 10 mmol/l, but not in its absence, with a lowest effective level of approximately 0.1 mmol/l, a maximum of 18-30 mmol/l, and an inhibitory concentration, 50%, of approximately 3 mmol/l. The data are consistent with the hypothesis that glucose inhibits glutaminolysis in pancreatic beta-cells in a concentration-dependent manner and hence blocks leucine-stimulated insulin secretion. We postulate that in the basal interprandial state, glutaminolysis of beta-cells is partly turned on because glutamate dehydrogenase (GDH) is activated by a decreased P-potential due to partial fuel depletion and sensitization to endogenous activators such as leucine. Additionally, it may contribute significantly to basal insulin release, which is known to be responsible for about half of the insulin released daily. The data explain "leucine-hypersensitivity" of beta-cells during hypoglycemia and contribute to the elucidation of the GDH-linked syndrome of hyperinsulinism associated with elevated serum ammonia levels. Thus, understanding the precise regulation and role of beta-cell glutaminolysis is probably central to our concept of normal blood glucose control.
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ∼13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ∼10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.