Investigating new antimicrobial and antiparasitic components from Viperidae venoms represents an alternative therapeutic strategy. In this study, we report the characterization of a disintegrin isolated from Cerastes cerastes venom, exhibiting antiparasitic activity on Leishmania infantum promastigotes. Indeed, isolated disintegrin, referred to Disintegrin_Cc, induced 84.75% of parasiticidal activity and deep morphological alterations on the parasites. SDS-PAGE analysis indicated that this disintegrin was homogenous. This dimeric disintegrin of 14,193.97 Da contains an RGD domain and four intramolecular disulfide bridges. It presents a high percentage of identity with other related snake disintegrins. Predicted 3D structure indicated that this peptide shares partial homology with well-known active antimicrobial peptides. Disintegrin_Cc inhibited 80% of arachidonic acid-induced platelet aggregation. The obtained results suggest that the isolated molecule plays a dual role as a disintegrin and as an anti-leishmanial compound. This component could be useful as a drug in the treatment of leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.