Knowing temperatures at the tool-chip interface is extremely important to optimize the machining condition and to improve the machining performance, furthermore to design high performance materials. In order to grasp the temperature distribution at the tool-chip interface, this study has devised an indexable insert with seven pairs of built-in micro Cu/Ni thermocouples on the rake face near the cutting edge. This paper shows the performance of the indexable insert with built-in micro thermocouples developed. The thickness of each element of the micro thermocouple is approximately 15 μm. The result of unsteady heat conduction analysis employing FEM shows that the temperature difference by installing the micro thermocouples is less than 10 K or 1.2 %. The temperature measurement experiments by cutting of aluminum alloy were carried out by changing the cutting speed. The results provided the evidence that the temperature distribution at the tool-chip interface can be grasped with the indexable insert with built-in micro thermocouples developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.