Polypropylene/wood flour composites with different nanoclay and maleic anhydride grafted polypropylene (PP-g-MA) contents were fabricated by melt compounding and then by injection molding. The mechanical properties, such as flexural modulus, tensile modulus, elongation at break, and impact strength, were evaluated. Results indicated that the flexural modulus, tensile modulus, and elongation at break increases with increase of nanoclay up to 3 phc at the same concentration of PP-g-MA, and then decreases. However, the impact strength of the composites decreases with increased nanoclay loading. Also, the effect of compatibilzer was positive in terms of enhancing the mechanical properties of the composites. The morphology of the nanocomposites has been examined by using X-ray diffraction and transmission electron microscopy. Morphological findings revealed that intercalation form, the sample with 3 phc concentration of clay, which implies the formation of the intercalation morphology and better dispersion than 6 phc, and the d-spacing of clay layers in the composite were improved in the presence of compatibilizer.
Most applications expose the materials to wide range of temperatures, which may influence on thermal behavior of materials. Thermal degradation of wood polymer composites (WPCs) is a crucial aspect for application and manufacturing process of these products. In this research, wood polymer composites with different nanoclay contents were prepared by melts compounding method. The amount of wood flour and coupling agent were fixed at 40% and 10% wt% (total weight), respectively, and the different levels of nanoclay include 0, 3 and 5% wt% were used in preparing the composites. Thermal properties of nanocomposites were characterized by Differential Scanning Calorimeter (DSC) and thermal gravimetric analysis (TGA). The DSC analyses show that the crystallization temperature (Tc), enthalpy ΔHm, and the degree of crystallinity (Xc) of the nanocomposites were increased by addition of nanoclay. The TGA results indicate that by increasing the nanoclay percentage the degradation temperatures and thermal stability was enhanced.
This study was performed to determine the effect of boric acid treatment upon the decay resistance and mechanical properties of poplar wood. Test specimens were prepared from poplar wood (Populus nigra L.) to meet ASTM D 143-94 and BS 838:1961 requirements. Samples were impregnated with boric acid solution (0.5, 1, and 2% w/w in distilled water) and by a long-term (21 days) dipping technique to reach complete saturation. Impregnated specimens were exposed to rainbow white-rot fungus (Trametes versicolor) for 14 weeks according to BS 838:1961 as applied by the kolle-flask method. The weight loss, compression strength parallel to the grain, and Brinell hardness were determined after impregnation and exposure to white-rot fungus. The highest weight loss (28.60%) was observed for untreated control samples and the lowest (0.63%) occurred in samples treated with 2% boric acid solution. The highest compression strength parallel to the grain was noted in samples treated with 0.5% boric acid and decayed (22.59 MPa) and the lowest compression strength parallel to the grain was recorded in untreated decayed samples (10.42 MPa). The highest Brinell hardness on tangential surface was observed in samples treated with 1% boric acid and decayed (1.32 KN) and the lowest was noted in untreated decayed samples (0.39 KN). The highest Brinell hardness on radial surface was observed in samples treated with 1% boric acid and decayed (1.07 KN) and the lowest was found in untreated decayed samples (0.35 KN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.