Introduction The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Methods Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. Results All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. Conclusions XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules.
The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.