Type I interferon (IFN) is produced when host sensors detect foreign nucleic acids, but how sensors differentiate self from nonself nucleic acids, such as double-stranded RNA (dsRNA), is incompletely understood. Mutations in ADAR1, an adenosine-to-inosine editing enzyme of dsRNA, cause Aicardi-Goutières syndrome, an autoinflammatory disorder associated with spontaneous interferon production and neurologic sequelae. We generated ADAR1 knockout human cells to explore ADAR1 substrates and function. ADAR1 primarily edited Alu elements in RNA polymerase II (pol II)-transcribed mRNAs, but not putative pol III-transcribed Alus. During the IFN response, ADAR1 blocked translational shutdown by inhibiting hyperactivation of PKR, a dsRNA sensor. ADAR1 dsRNA binding and catalytic activities were required to fully prevent endogenous RNA from activating PKR. Remarkably, ADAR1 knockout neuronal progenitor cells exhibited MDA5 (dsRNA sensor)-dependent spontaneous interferon production, PKR activation, and cell death. Thus, human ADAR1 regulates sensing of self versus nonself RNA, allowing pathogen detection while avoiding autoinflammation.
Group A streptococci (Streptococcus pyogenes or GAS) freshly isolated from individuals with streptococcal sore throat or invasive (''flesh-eating'') infection often grow as mucoid colonies on primary culture but lose this colony appearance after laboratory passage. The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence determinant associated with severe GAS infections. These observations suggest that signal(s) from the human host trigger increased production of capsule and perhaps other virulence factors during infection. Here we show that subinhibitory concentrations of the human antimicrobial cathelicidin peptide LL-37 stimulate expression of the GAS capsule synthesis operon (hasABC). Up-regulation is mediated by the CsrRS 2-component regulatory system: it requires a functional CsrS sensor protein and can be antagonized by increased extracellular Mg 2؉ , the other identified environmental signal for CsrS. Up-regulation was also evident for other CsrRS-regulated virulence genes, including the IL-8 protease PrtS/ScpC and the integrin-like/IgG protease Mac/IdeS, findings that suggest a coordinated GAS virulence response elicited by this antimicrobial immune effector peptide. LL-37 signaling through CsrRS led to a marked increase in GAS resistance to opsonophagocytic killing by human leukocytes, an in vitro measure of enhanced GAS virulence, consistent with increased expression of the antiphagocytic capsular polysaccharide and Mac/IdeS. We propose that the human cathelicidin LL-37 has the paradoxical effect of stimulating CsrRS-regulated virulence gene expression, thereby enhancing GAS pathogenicity during infection. The ability of GAS to sense and respond to LL-37 may explain, at least in part, the unique susceptibility of the human species to streptococcal infection.
Human adenosine deaminase acting on RNA 1 (ADAR1) catalyzes adenosine-to-inosine deamination reactions on double-stranded RNA molecules to regulate cellular responses to endogenous and exogenous RNA. Defective ADAR1 editing leads to disorders such as Aicardi-Goutières syndrome, an autoinflammatory disease that manifests in the brain and skin, and dyschromatosis symmetrica hereditaria, a skin pigmentation disorder. Two ADAR1 protein isoforms, p150 (150 kDa) and p110 (110 kDa), are expressed and can edit RNA, but the contribution of each isoform to the editing landscape remains unclear, largely because of the challenges in expressing p150 without p110. In this study, we demonstrate that p110 is coexpressed with p150 from the canonical p150-encoding mRNA due to leaky ribosome scanning downstream of the p150 start codon. The presence of a strong Kozak consensus context surrounding the p110 start codon suggests the p150 mRNA is optimized to leak p110 alongside expression of p150. To reduce leaky scanning and translation initiation at the p110 start codon, we introduced synonymous mutations in the coding region between the p150 and p110 start codons. Cells expressing p150 constructs with these mutations produced significantly reduced levels of p110. Editing analysis of total RNA from ADAR1 knockout cells reconstituted separately with modified p150 and p110 revealed that more than half of the A-to-I edit sites are selectively edited by p150, and the other half are edited by either p150 or p110. This method of isoform-selective editing analysis, making use of the modified p150, has the potential to be adapted for other cellular contexts.
Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5’UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5’ end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity.
ADAR1, an RNA‐editing enzyme, plays a key role in preventing self‐RNAs from triggering autoinflammatory responses. In this issue of EMBO reports, Nakahama and colleagues uncover a novel role for ADAR1 in T cells . The authors report that in T cells, ADAR1‐mediated suppression of type I interferon‐stimulated gene (ISG) expression is required for thymic T cell self‐tolerance and prevention of colitis. These findings establish a novel function of ADAR1 in T cells and suggest that autoreactive T cells may contribute to disease symptoms in autoinflammatory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.