Triple-negative breast cancer (TNBC) cells overexpress the epidermal growth factor receptor (EGFR). Nuclear EGFR (nEGFR) drives resistance to anti-EGFR therapy and is correlated with poor survival in breast cancer. Inhibition of EGFR nuclear translocation may be a reasonable approach for the treatment of TNBC. The anti-malarial drugs chloroquine and primaquine have been shown to promote an anticancer effect. The aim of the present study was to investigate the effect and mechanism of chloroquine- and primaquine-induced apoptosis of breast cancer cells. We showed that primaquine, a malaria drug, inhibits the growth, migration, and colony formation of breast cancer cells in vitro, and inhibits tumor growth in vivo. Primaquine induces damage to early endosomes and inhibits the nuclear translocation of EGFR. Primaquine inhibits the interaction of Stat3 and nEGFR and reduces the transcript and protein levels of c-Myc. Moreover, primaquine and chloroquine induce the apoptosis of breast cancer cells through c-Myc/Bcl-2 downregulation, induce early endosome damage and reduce nEGFR levels, and induce apoptosis in breast cancer through nEGFR/Stat3-dependent c-Myc downregulation. Our study of primaquine and chloroquine provides a rationale for targeting EGFR signaling components in the treatment of breast cancer.
Although fish oil (FO) and lipid mediators (LM) derived from polyunsaturated fatty acids can prevent obesity, their combined effects and cellular metabolism remain unclear. Therefore, this study aimed to examine the potential protective and metabolic effects of FO in combination with LM (a mixture of 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX [3:47:50], derived from docosahexaenoic acid (DHA)) on palmitic acid (PA)-induced HepG2 cells and high-fat- diet (HFD)-induced C57BL/6J mice after 9-week treatment. Lipid metabolism disorders and inflammation induced by HFD and PA were substantially reduced after FO and LM treatment. Further, FO and LM treatments reduced lipid accumulation by increasing fatty acid oxidation via peroxisome proliferator-activated receptor α and carnitine-palmitoyl transferase 1 as well as by decreasing fatty acid synthesis via sterol regulatory element-binding protein-1c and fatty acid synthase. Finally, FO and LM treatment reduced inflammation by blocking the NF-κB signaling pathway. Importantly, the combination of FO and LM exhibited more robust efficacy against nonalcoholic fatty liver disease, suggesting that FO supplemented with LM is a beneficial dietary strategy for treating this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.