Biomechanical perspective of external fixator is one of the greatest factor to consider in successfully treating bone fracture. This is due to the fact that mechanical behavior of the structure can be analyzed and optimized in order to avoid mechanical failure, increase bone fracture healing rate and prevent pre-term screw loosening. There are three significant factors that affect the stability of external fixator which are the placement of pin at the bone, configuration and components of external fixator. These factors lead to one question: what is the optimum pin placement in which exerts optimum stability? To date, literature on above mentioned factors is limited. Therefore, we conducted a study to evaluate the uniplanar-unilateral external fixator for two different pin placement techniques in treating transverse tibia fracture via finite element method. The study was started off with the development of transverse tibia fracture using Mimics software. Computed tomography (CT) data image was utilized to develop three dimensional tibia bone followed by crafting fracture on the bone. Meanwhile, the external fixator was developed using SolidWork software. Both tibia bone and external fixator were meshed in 3-matic software with triangular mesh element. Simulation of this configuration was took place in a finite element software, Marc.Mentat software. A load of 400 N was applied to the proximal tibia bone in order to simulate stance phase of a gait cycle. From the findings, the pin placement at the second cortex of bone provided optimum stability in terms of stress distribution and displacement, which should be considered for better treatment for transverse tibia fracture. On the other hand, the pin placement at first cortex should be avoided to prevent many complications.
An external fixator is normally used by medical surgeons in treating subtalar dislocation due to its biomechanical characteristics that can providing an adequate stability, preventing deformity (mal-union and non-union), reduce rate of infections, and promoting fast healing process as compared to coventional internal fixator. Apart from the configurations and fixation techniques, previous studies has mentioned that the stability of external fixator can be altered and manipulated by using different materials, e.g. stainless steel, titanium alloy and polymer. To be noted, the current available research works that have been investigated on different materials of external fixator are still lacking, therefore, the present study is aims to conduct related study. The main objective of the research work is to simulate finite element model of foot and ankle joint associated with open subtalar dislocation in which treated with Mitkovic external fixator by using two different material properties; titanium alloy (Model 1) and stainless steel (Model 2). The three-dimensional model of foot and ankle joint were reconstructed using images of CT dataset. For the soft tissues, cartilages at the ankle joint were developed by offsetting the bone surfaces with 1 mm thickness while ligaments were modelled with linear links. Homogeneous and isotropic properties were assigned to the bone, Mooney-Rivlin model for cartilage and specific stiffness value for ligaments. In order to simulate stance phase during walking condition, an axial load of 350 N was applied to the proximal tibia bone. The results of von Mises stress demonstrated that Model 2 has a low magnitude (127 MPa) at the pin-bone interface of tibia bone, compared with Model 1 (369 MPa). As for the local displacement at the bony segment of fibula, Model 2 (3.3 mm) indicated high stability of the external fixator than Model 1 (7.4 mm). In conclusion, the use of stainless steel material for Mitkovic external fixator can provide adequate stability and optimum stress distribution.
Sports injury is an issue that frequently occurs among athletes. The most common sports injuries are ankle sprains. Hence, to overcome this problem, the National Sports Institute and the Malaysia Sport School has set up special clinics for athletes undergoing rehabilitation treatment. In RMK 10 (2010-2015), the government aims to provide the best medical facilities and producing high value medical device. In spite of the advancement and variety of available ankle rehabilitation technology device, there is an eminent need to investigate the current position on the acceptance of these rehabilitation devices to assist patient recovery. Therefore, in this study technology acceptance model is designed to investigate the user acceptance on ankle rehabilitation technology device application in healthcare industry. The purpose of this study is to design a quantitative approach based on the technology acceptance model questionnaire as its primary research methodology. It utilized quantitative approach based on Technology Acceptance Model (TAM) to evaluate the system of ankle rehabilitation technology device. The related constructs for evaluation are: Perceived of Usefulness, Perceived Ease of Use, User Satisfaction and Attribute of Usability. All these constructs are modified to suit the context of the study. Moreover, this study outlines the details of each construct and its relevance toward the research issue. The outcome of the study represents series of approaches that will be apply to check the suitability of an ankle rehabilitation technology device on patient in healthcare industry and how well it achieve the aims and objectives of the design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.